A hyper-viscoelastic constitutive model for elastomers: A case study of hydrogenated nitrile butadiene rubber and polychloroprene rubber

Romi Dhakad, Dattatraya R. Hipparkar, Anil Kumar, S. Chandel
{"title":"A hyper-viscoelastic constitutive model for elastomers: A case study of hydrogenated nitrile butadiene rubber and polychloroprene rubber","authors":"Romi Dhakad, Dattatraya R. Hipparkar, Anil Kumar, S. Chandel","doi":"10.1177/00952443231191765","DOIUrl":null,"url":null,"abstract":"Elastomer materials are widely used as shock absorbers in a variety of practical applications including the automotive, aerospace, marine industries and structures. The straightforward Hooke’s law is insufficient to adequately describe the behavior of elastomeric materials due to their nonlinear elastic and viscous properties. This study proposes a hyper-viscoelastic model to describe the mechanical behavior of Hydrogenated Nitrile Butadiene Rubber (HNBR) 62 Duro shore A and Polychloroprene Rubber (PCR) 55 Duro shore A. Six distinct hyperelastic models—Yeoh, Rivlin, Arruda-Boyce, Mooney-Rivlin, Neo-Hookean, and Ogden— are compared herein to explain the nonlinear elastic behavior of elastomers. While the time-dependent characteristics of the considered materials have been described using the four parameters Generalised Maxwell (GM) model. The material parameters of models are determined using the least square fit (LSF) optimization algorithm from the uniaxial, planar, and stress relaxation test data. The stability and suitability of each hyperelastic model is assessed using the Drucker stability. The accuracy of each model is represented by Root Mean Square Error (RMSE) of curve fitting between theoretical and experimental data. On this basis, the Ogden order three (N = 3) model and the four-parameter GM models are selected which well agreed with the experimental test data and they are integrated to generate the hyper-viscoelastic constitutive model. In addition, the hyper-viscoelastic model is used to simulate the HNBR and PCR dampers under shock load. The numerically generated response is finally compared with the experimental test result of natural rubber (NR) 60 IRH from the existing literature to confirm accuracy of the proposed model.","PeriodicalId":15613,"journal":{"name":"Journal of Elastomers & Plastics","volume":"38 1","pages":"1013 - 1034"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elastomers & Plastics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00952443231191765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Elastomer materials are widely used as shock absorbers in a variety of practical applications including the automotive, aerospace, marine industries and structures. The straightforward Hooke’s law is insufficient to adequately describe the behavior of elastomeric materials due to their nonlinear elastic and viscous properties. This study proposes a hyper-viscoelastic model to describe the mechanical behavior of Hydrogenated Nitrile Butadiene Rubber (HNBR) 62 Duro shore A and Polychloroprene Rubber (PCR) 55 Duro shore A. Six distinct hyperelastic models—Yeoh, Rivlin, Arruda-Boyce, Mooney-Rivlin, Neo-Hookean, and Ogden— are compared herein to explain the nonlinear elastic behavior of elastomers. While the time-dependent characteristics of the considered materials have been described using the four parameters Generalised Maxwell (GM) model. The material parameters of models are determined using the least square fit (LSF) optimization algorithm from the uniaxial, planar, and stress relaxation test data. The stability and suitability of each hyperelastic model is assessed using the Drucker stability. The accuracy of each model is represented by Root Mean Square Error (RMSE) of curve fitting between theoretical and experimental data. On this basis, the Ogden order three (N = 3) model and the four-parameter GM models are selected which well agreed with the experimental test data and they are integrated to generate the hyper-viscoelastic constitutive model. In addition, the hyper-viscoelastic model is used to simulate the HNBR and PCR dampers under shock load. The numerically generated response is finally compared with the experimental test result of natural rubber (NR) 60 IRH from the existing literature to confirm accuracy of the proposed model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性体的超粘弹性本构模型:以氢化丁腈橡胶和氯丁橡胶为例
弹性体材料作为减震器广泛应用于各种实际应用,包括汽车、航空航天、海洋工业和结构。由于弹性体材料的非线性弹性和粘性特性,直接的胡克定律不足以充分描述弹性体材料的行为。本研究提出了一个超粘弹性模型来描述氢化丁腈橡胶(HNBR) 62 Duro shore a和氯丁橡胶(PCR) 55 Duro shore a的力学行为。本文比较了六种不同的超弹性模型——yeoh、Rivlin、Arruda-Boyce、Mooney-Rivlin、Neo-Hookean和Ogden,以解释弹性体的非线性弹性行为。而考虑的材料的时间依赖特性已经使用四参数广义麦克斯韦(GM)模型进行了描述。采用最小二乘拟合(LSF)优化算法从单轴、平面和应力松弛试验数据中确定模型的材料参数。每个超弹性模型的稳定性和适用性使用德鲁克稳定性进行评估。每个模型的精度由理论数据与实验数据曲线拟合的均方根误差(RMSE)表示。在此基础上,选取与试验试验数据吻合较好的Ogden三阶(N = 3)模型和四参数GM模型,并将其整合生成超粘弹性本构模型。此外,采用超粘弹性模型模拟了HNBR和PCR阻尼器在冲击载荷作用下的性能。最后将数值生成的响应与现有文献中天然橡胶(NR) 60 IRH的实验测试结果进行了比较,以验证所提模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of fluoroelastomers compounds by ATR-FTIR Patents for JEP 56 (6) Free vibration analysis of an O-pattern graphene reinforced axial functionally graded polymer matrix nano-composite non-uniform beam Vapour permeation characteristics of aliphatic alcohols through PVA/PVC thin films A novel design of compact elastomer shock absorption system to protect sensitive objects from underwater shock for naval application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1