{"title":"Partial duplicate detection for large book collections","authors":"I. Z. Yalniz, E. Can, R. Manmatha","doi":"10.1145/2063576.2063647","DOIUrl":null,"url":null,"abstract":"A framework is presented for discovering partial duplicates in large collections of scanned books with optical character recognition (OCR) errors. Each book in the collection is represented by the sequence of words (in the order they appear in the text) which appear only once in the book. These words are referred to as \"unique words\" and they constitute a small percentage of all the words in a typical book. Along with the order information the set of unique words provides a compact representation which is highly descriptive of the content and the flow of ideas in the book. By aligning the sequence of unique words from two books using the longest common subsequence (LCS) one can discover whether two books are duplicates. Experiments on several datasets show that DUPNIQ is more accurate than traditional methods for duplicate detection such as shingling and is fast. On a collection of 100K scanned English books DUPNIQ detects partial duplicates in 30 min using 350 cores and has precision 0.996 and recall 0.833 compared to shingling with precision 0.992 and recall 0.720. The technique works on other languages as well and is demonstrated for a French dataset.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"238 1","pages":"469-474"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A framework is presented for discovering partial duplicates in large collections of scanned books with optical character recognition (OCR) errors. Each book in the collection is represented by the sequence of words (in the order they appear in the text) which appear only once in the book. These words are referred to as "unique words" and they constitute a small percentage of all the words in a typical book. Along with the order information the set of unique words provides a compact representation which is highly descriptive of the content and the flow of ideas in the book. By aligning the sequence of unique words from two books using the longest common subsequence (LCS) one can discover whether two books are duplicates. Experiments on several datasets show that DUPNIQ is more accurate than traditional methods for duplicate detection such as shingling and is fast. On a collection of 100K scanned English books DUPNIQ detects partial duplicates in 30 min using 350 cores and has precision 0.996 and recall 0.833 compared to shingling with precision 0.992 and recall 0.720. The technique works on other languages as well and is demonstrated for a French dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对大型藏书的部分重复检测
提出了一种用于发现具有光学字符识别(OCR)错误的大量扫描图书的部分副本的框架。集合中的每本书都用在书中只出现一次的单词序列(按照它们在文本中出现的顺序)来表示。这些词被称为“独特的词”,它们在一本典型的书中所占的比例很小。随着顺序信息,一组独特的单词提供了一个紧凑的表示,这是高度描述性的内容和思想的流动在书中。通过使用最长公共子序列(LCS)对两本书中的唯一单词序列进行对齐,可以发现两本书是否重复。在多个数据集上的实验表明,DUPNIQ比传统的带状重复检测方法(shingling)更准确,速度更快。在一个100K的英文图书扫描集上,DUPNIQ使用350个核在30分钟内检测出部分重复,其精度为0.996,召回率为0.833,而shingling的精度为0.992,召回率为0.720。该技术也适用于其他语言,并针对法语数据集进行了演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Backdoor in Seconds: Unlocking Vulnerabilities in Large Pre-trained Models via Model Editing. MUSE: A Multi-slice Joint Analysis Method for Spatial Transcriptomics Experiments. scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. HypMix: Hyperbolic Representation Learning for Graphs with Mixed Hierarchical and Non-hierarchical Structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1