{"title":"AURONE AS PROMISING HUMAN PANCREATIC LIPASE INHIBITORS THROUGH IN SILICO STUDY","authors":"Phuong D. Nguyen, D. Tran, H. Huynh","doi":"10.3390/ecsoc-23-06505","DOIUrl":null,"url":null,"abstract":"In this study, 82 aurone compounds, a subclass of flavonoids were investigated towards to human pancreatic lipase inhibitory activity. Molecular docking of the aurones was done successfully into the catalytic position of lipase (Pdb: 1LPB) using AutoDock Vina software 1.5.7.rc1. The results showed that 62 compounds interacted well with residues in the catalytic trial Ser152-Asp176-His263 and Phe77 of protein 1LPB. In particular, A32 was selected as the best binding compound (docking score: -10.6 kcal.mol-1) and suitable for oral drug following the 5-Lipinski rule. Combining the results of docking and molecular dynamics simulation of A32protein complex during 10 ns, this study performed that the A32 compound bound well and formed a stable complex with 1LPB protein. Therefore, the A32 compound was considered as the lead compound which could be synthesized and tested for pancreatic lipase inhibitor.","PeriodicalId":20537,"journal":{"name":"Proceedings of The 23rd International Electronic Conference on Synthetic Organic Chemistry","volume":"125 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 23rd International Electronic Conference on Synthetic Organic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ecsoc-23-06505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, 82 aurone compounds, a subclass of flavonoids were investigated towards to human pancreatic lipase inhibitory activity. Molecular docking of the aurones was done successfully into the catalytic position of lipase (Pdb: 1LPB) using AutoDock Vina software 1.5.7.rc1. The results showed that 62 compounds interacted well with residues in the catalytic trial Ser152-Asp176-His263 and Phe77 of protein 1LPB. In particular, A32 was selected as the best binding compound (docking score: -10.6 kcal.mol-1) and suitable for oral drug following the 5-Lipinski rule. Combining the results of docking and molecular dynamics simulation of A32protein complex during 10 ns, this study performed that the A32 compound bound well and formed a stable complex with 1LPB protein. Therefore, the A32 compound was considered as the lead compound which could be synthesized and tested for pancreatic lipase inhibitor.