Power-based Side-Channel Instruction-level Disassembler

Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, M. Tehranipoor
{"title":"Power-based Side-Channel Instruction-level Disassembler","authors":"Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, M. Tehranipoor","doi":"10.1145/3195970.3196094","DOIUrl":null,"url":null,"abstract":"Modern embedded computing devices are vulnerable against mal-ware and software piracy due to insufficient security scrutiny and the complications of continuous patching. To detect malicious activity as well as protecting the integrity of executable software, it is necessary to monitor the operation of such devices. In this paper, we propose a disassembler based on power-based side-channel to analyze the real-time operation of embedded systems at instruction-level granularity. The proposed disassembler obtains templates from an original device (e.g., IoT home security system, smart thermostat, etc.) and utilizes machine learning algorithms to uniquely identify instructions executed on the device. The feature selection using Kullback-Leibler (KL) divergence and the dimensional reduction using PCA in the time-frequency domain are proposed to increase the identification accuracy. Moreover, a hierarchical classification framework is proposed to reduce the computational complexity associated with large instruction sets. In addition, covariate shifts caused by different environmental measurements and device-to-device variations are minimized by our covariate shift adaptation technique. We implement this disassembler on an AVR 8-bit microcontroller. Experimental results demonstrate that our proposed disassembler can recognize test instructions including register names with a success rate no lower than 99.03% with quadratic discriminant analysis (QDA).","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

Modern embedded computing devices are vulnerable against mal-ware and software piracy due to insufficient security scrutiny and the complications of continuous patching. To detect malicious activity as well as protecting the integrity of executable software, it is necessary to monitor the operation of such devices. In this paper, we propose a disassembler based on power-based side-channel to analyze the real-time operation of embedded systems at instruction-level granularity. The proposed disassembler obtains templates from an original device (e.g., IoT home security system, smart thermostat, etc.) and utilizes machine learning algorithms to uniquely identify instructions executed on the device. The feature selection using Kullback-Leibler (KL) divergence and the dimensional reduction using PCA in the time-frequency domain are proposed to increase the identification accuracy. Moreover, a hierarchical classification framework is proposed to reduce the computational complexity associated with large instruction sets. In addition, covariate shifts caused by different environmental measurements and device-to-device variations are minimized by our covariate shift adaptation technique. We implement this disassembler on an AVR 8-bit microcontroller. Experimental results demonstrate that our proposed disassembler can recognize test instructions including register names with a success rate no lower than 99.03% with quadratic discriminant analysis (QDA).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于功率的侧信道指令级反汇编器
由于安全审查不足和持续修补的复杂性,现代嵌入式计算设备容易受到恶意软件和软件盗版的攻击。为了检测恶意活动以及保护可执行软件的完整性,有必要监视这些设备的操作。本文提出了一种基于功率侧信道的反汇编器,在指令级粒度上分析嵌入式系统的实时运行。所提出的反汇编器从原始设备(例如,IoT家庭安全系统,智能恒温器等)获取模板,并利用机器学习算法来唯一识别在设备上执行的指令。提出了利用Kullback-Leibler (KL)散度进行特征选择和利用PCA在时频域进行降维的方法来提高识别精度。此外,为了降低大型指令集的计算复杂度,提出了一种分层分类框架。此外,由不同的环境测量和设备到设备的变化引起的协变量位移通过我们的协变量位移适应技术最小化。我们在AVR 8位微控制器上实现了该反汇编器。实验结果表明,采用二次判别分析(quadratic discriminant analysis, QDA),该反汇编器可以识别包含寄存器名的测试指令,成功率不低于99.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1