Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2023-06-23 DOI:10.1021/acsnano.3c03028
Zhibin Chen, Chengzhi Hu*, Chenghai Lu, Jingqiu Sun, Yanyan Zhang*, Fuyi Wang and Jiuhui Qu*, 
{"title":"Steric Hindrance-Induced Dehydration Promotes Cation Selectivity in Trans-Subnanochannel Transport","authors":"Zhibin Chen,&nbsp;Chengzhi Hu*,&nbsp;Chenghai Lu,&nbsp;Jingqiu Sun,&nbsp;Yanyan Zhang*,&nbsp;Fuyi Wang and Jiuhui Qu*,&nbsp;","doi":"10.1021/acsnano.3c03028","DOIUrl":null,"url":null,"abstract":"<p >Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the <i>in situ</i> liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li<sup>+</sup> over other alkaline metal ions, leading to a Li<sup>+</sup>/Rb<sup>+</sup> selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (&gt;1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (~10<sup>4</sup>). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c03028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Dehydration is a basic phenomenon in ion transport through confined nanochannels, but how it affects ion trans-membrane selectivity has not been understood due to a lack of characterization techniques and suitable pore structures. Herein, hydration number distributions of typical alkali metal ions were characterized by combining uniform subnanochannels of ZIF-8-based membranes with the in situ liquid time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique, revealing that steric hindrance induced ion dehydration through neutral confined ZIF-8 windows. The reduction in size due to partial dehydration increased the intrapore velocity for monovalent cations. The highest entropy value with maximum size changes resulting from dehydration drove fast and efficient selective transport of Li+ over other alkaline metal ions, leading to a Li+/Rb+ selectivity of 5.2. The dehydration at the entrance of membrane pores was shown to account for the majority of overall barriers, being a dominant element for ion transport. High hydration energy (>1500 kJ/mol) hindered the dehydration and transport of typical alkaline earth metal ions, achieving ultrahigh monovalent/bivalent cation selectivity (~104). These findings uncover the crucial role of dehydration energy barriers and size-based entropy barriers in ion selectivity of trans-subnanochannel transport, providing guidelines for designing selective membranes with specific pore sizes to promote the dehydration of desired solutes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间位阻诱导脱水促进跨亚纳米通道运输中的阳离子选择性
脱水是离子通过受限纳米通道传输的一种基本现象,但由于缺乏表征技术和合适的孔结构,脱水如何影响离子跨膜选择性尚不清楚。本文采用原位液体飞行时间二次离子质谱(ToF-SIMS)技术结合ZIF-8基膜的均匀亚纳米通道对典型碱金属离子的水化数分布进行了表征,揭示了空间位阻通过中性受限的ZIF-8窗口诱导离子脱水。部分脱水导致的体积减小增加了一价阳离子的孔内流速。脱水导致的最大尺寸变化和最大熵值驱动Li+在其他碱金属离子上快速有效的选择性输运,Li+/Rb+的选择性为5.2。在膜孔入口处的脱水被证明是整个屏障的主要原因,是离子传输的主要因素。较高的水化能(>1500 kJ/mol)阻碍了典型碱土金属离子的脱水和转运,实现了超高的一价/二价阳离子选择性(~104)。这些发现揭示了脱水能垒和基于尺寸的熵垒在跨亚纳米通道离子选择性传输中的关键作用,为设计具有特定孔径的选择性膜以促进所需溶质的脱水提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A Direct Current Self-Sustained Moisture-Electric Generator with 1D/2D Hierarchical Nanostructure for Continuous Operation of Off-Grid Electronics. Atomic Manipulation to Create High-Valent Fe4+ for Efficient and Ultrastable Oxygen Evolution at Industrial-Level Current Density. Defect-Driven Evolution of Oxo-Coordinated Cobalt Active Sites with Rapid Structural Transformation for Efficient Water Oxidation. Endogenous Magnetic Lipid Droplet-Mediated Cascade-Targeted Sonodynamic Therapy as an Approach to Reversing Breast Cancer Multidrug Resistance. Unraveling the Origin of Elemental Chemical Shift and the Role of Atomic Hydrogen in a Surface Ullmann Coupling System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1