Beatriz García-Castellanos, Osney Pérez-Ones, Lourdes Zumalacárregui-de-Cárdenas, I. Blanco-Carvajal, Luis Eduardo López-de-la-Maza
{"title":"Neural Model for the Prediction of Volume Losses in the Aging Process of Rums","authors":"Beatriz García-Castellanos, Osney Pérez-Ones, Lourdes Zumalacárregui-de-Cárdenas, I. Blanco-Carvajal, Luis Eduardo López-de-la-Maza","doi":"10.19053/01211129.v29.n54.2020.10514","DOIUrl":null,"url":null,"abstract":"The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961.","PeriodicalId":21428,"journal":{"name":"Revista Facultad De Ingenieria-universidad De Antioquia","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Facultad De Ingenieria-universidad De Antioquia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19053/01211129.v29.n54.2020.10514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rum aging process shows volume losses, called wastage. The numerical operation variables: product, boardwalk, horizontal and vertical positions, date, volume, alcoholic degree, temperature, humidity and aging time, recorded in databases, contain valuable information to study the process. MATLAB 2017 software was used to estimate volume losses. In the modeling of the rum aging process, the multilayer perceptron neuronal network with one and two hidden layers was used, varying the number of neurons in these between 4 and 10. The Levenberg-Marquadt (LM) and Bayesian training algorithms were compared (Bay) The increase in 6 consecutive iterations of the validation error and 1,000 as the maximum number of training cycles were the criteria used to stop the training. The input variables to the network were: numerical month, volume, temperature, humidity, initial alcoholic degree and aging time, while the output variable was wastage. 546 pairs of input/output data were processed. The statistical Friedman and Wilcoxon tests were performed to select the best neural architecture according to the mean square error (MSE) criteria. The selected topology has a 6-4-4-1 structure, with an MSE of 2.1∙10-3 and a correlation factor (R) with experimental data of 0.9898. The neural network obtained was used to simulate thirteen initial aging conditions that were not used for training and validation, detecting a coefficient of determination (R2) of 0.9961.
期刊介绍:
Revista Facultad de Ingenieria started in 1984 and is a publication of the School of Engineering at the University of Antioquia.
The main objective of the journal is to promote and stimulate the publishing of national and international scientific research results. The journal publishes original articles, resulting from scientific research, experimental and or simulation studies in engineering sciences, technology, and similar disciplines (Electronics, Telecommunications, Bioengineering, Biotechnology, Electrical, Computer Science, Mechanical, Chemical, Environmental, Materials, Sanitary, Civil and Industrial Engineering).
In exceptional cases, the journal will publish insightful articles related to current important subjects, or revision articles representing a significant contribution to the contextualization of the state of the art in a known relevant topic. Case reports will only be published when those cases are related to studies in which the validity of a methodology is being proven for the first time, or when a significant contribution to the knowledge of an unexplored system can be proven.
All published articles have undergone a peer review process, carried out by experts recognized for their knowledge and contributions to the relevant field.
To adapt the Journal to international standards and to promote the visibility of the published articles; and therefore, to have a greater impact in the global academic community, after November 1st 2013, the journal will accept only manuscripts written in English for reviewing and publication.
Revista Facultad de Ingeniería –redin is entirely financed by University of Antioquia
Since 2015, every article accepted for publication in the journal is assigned a DOI number.