Laplace approximation for logistic Gaussian process density estimation and regression

J. Riihimaki, Aki Vehtari
{"title":"Laplace approximation for logistic Gaussian process density estimation and regression","authors":"J. Riihimaki, Aki Vehtari","doi":"10.1214/14-BA872","DOIUrl":null,"url":null,"abstract":"Logistic Gaussian process (LGP) priors provide a flexible alternative for modelling unknown densities. The smoothness properties of the density estimates can be controlled through the prior covariance structure of the LGP, but the challenge is the analytically intractable inference. In this paper, we present approximate Bayesian inference for LGP density estimation in a grid using Laplace's method to integrate over the non-Gaussian posterior distribution of latent function values and to determine the covariance function parameters with type-II maximum a posteriori (MAP) estimation. We demonstrate that Laplace's method with MAP is sufficiently fast for practical interactive visualisation of 1D and 2D densities. Our experiments with simulated and real 1D data sets show that the estimation accuracy is close to a Markov chain Monte Carlo approximation and state-of-the-art hierarchical infinite Gaussian mixture models. We also construct a reduced-rank approximation to speed up the computations for dense 2D grids, and demonstrate density regression with the proposed Laplace approach.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/14-BA872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Logistic Gaussian process (LGP) priors provide a flexible alternative for modelling unknown densities. The smoothness properties of the density estimates can be controlled through the prior covariance structure of the LGP, but the challenge is the analytically intractable inference. In this paper, we present approximate Bayesian inference for LGP density estimation in a grid using Laplace's method to integrate over the non-Gaussian posterior distribution of latent function values and to determine the covariance function parameters with type-II maximum a posteriori (MAP) estimation. We demonstrate that Laplace's method with MAP is sufficiently fast for practical interactive visualisation of 1D and 2D densities. Our experiments with simulated and real 1D data sets show that the estimation accuracy is close to a Markov chain Monte Carlo approximation and state-of-the-art hierarchical infinite Gaussian mixture models. We also construct a reduced-rank approximation to speed up the computations for dense 2D grids, and demonstrate density regression with the proposed Laplace approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
logistic高斯过程密度估计与回归的拉普拉斯近似
Logistic高斯过程(LGP)先验为建模未知密度提供了一种灵活的选择。通过LGP的先验协方差结构可以控制密度估计的平滑性,但难点在于难以解析的推理。在本文中,我们使用拉普拉斯方法对潜在函数值的非高斯后验分布进行积分,并使用ii型最大后验(MAP)估计确定协方差函数参数,给出了网格中LGP密度估计的近似贝叶斯推断。我们证明了拉普拉斯MAP方法对于一维和二维密度的实际交互可视化是足够快的。我们在模拟和真实一维数据集上的实验表明,估计精度接近马尔可夫链蒙特卡罗近似和最先进的分层无限高斯混合模型。我们还构建了一个降阶近似来加快密集二维网格的计算速度,并使用所提出的拉普拉斯方法演示了密度回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1