Big Data: Sources and Best Practices for Analytics

A. Luntovskyy, L. Globa
{"title":"Big Data: Sources and Best Practices for Analytics","authors":"A. Luntovskyy, L. Globa","doi":"10.1109/UkrMiCo47782.2019.9165334","DOIUrl":null,"url":null,"abstract":"Cyber-PHY, IoT, sensor networks, Robotics (thick and server-less mobile applications), real-time network applications (thin clouds clients) can generate large arrays of unmanaged, weakly structured, and non-configured data of various types, known as \"Big Data\". With the acceleration of industrial development \"Industry 4.0\" processing of such data became considerably more complicated. However, so-called problem \"Big Data\" is hard to solve or resist nowadays! The paper discusses the Best Practises and Case Studies aimed to overcoming of the Big Data problematics.","PeriodicalId":6754,"journal":{"name":"2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo)","volume":"30 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UkrMiCo47782.2019.9165334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cyber-PHY, IoT, sensor networks, Robotics (thick and server-less mobile applications), real-time network applications (thin clouds clients) can generate large arrays of unmanaged, weakly structured, and non-configured data of various types, known as "Big Data". With the acceleration of industrial development "Industry 4.0" processing of such data became considerably more complicated. However, so-called problem "Big Data" is hard to solve or resist nowadays! The paper discusses the Best Practises and Case Studies aimed to overcoming of the Big Data problematics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
《大数据:分析的来源和最佳实践
网络物理、物联网、传感器网络、机器人(厚和无服务器的移动应用)、实时网络应用(瘦云客户端)可以生成大量非管理、弱结构和非配置的各种类型的数据,被称为“大数据”。随着工业发展的加速,“工业4.0”对这些数据的处理变得更加复杂。然而,所谓的“大数据”问题在当今是难以解决或难以抗拒的!本文讨论了旨在克服大数据问题的最佳实践和案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of the Methods of Wavelet-and Spline-extrapolation in Problems of Predicting Self-similar Traffic Synchronizing Sequences For Verification Of Finite State Machines UkrMiCo 2019 Title Page Mathematical Optimization Model of Congestion Management, Resource Allocation and Congestion Avoidance on Network Routers Electrodynamic Approach to Designing Wireless Power Transfer Systems (Internal System Processes)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1