{"title":"Extractor-based time-space lower bounds for learning","authors":"Sumegha Garg, R. Raz, Avishay Tal","doi":"10.1145/3188745.3188962","DOIUrl":null,"url":null,"abstract":"A matrix M: A × X → {−1,1} corresponds to the following learning problem: An unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) …, where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai,x). Assume that k, l, r are such that any submatrix of M of at least 2−k · |A| rows and at least 2−l · |X| columns, has a bias of at most 2−r. We show that any learning algorithm for the learning problem corresponding to M requires either a memory of size at least Ω(k · l ), or at least 2Ω(r) samples. The result holds even if the learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least Ω((log|X|) · (log|A|)) or an exponential number of samples, achieving a tight Ω((log|X|) · (log|A|)) lower bound on the size of the memory, rather than a bound of Ω(min{(log|X|)2,(log|A|)2}) obtained in previous works by Raz [FOCS’17] and Moshkovitz and Moshkovitz [ITCS’18]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on the work of Raz [FOCS’17] that gave a general technique for proving memory samples lower bounds.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47
Abstract
A matrix M: A × X → {−1,1} corresponds to the following learning problem: An unknown element x ∈ X is chosen uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) …, where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai,x). Assume that k, l, r are such that any submatrix of M of at least 2−k · |A| rows and at least 2−l · |X| columns, has a bias of at most 2−r. We show that any learning algorithm for the learning problem corresponding to M requires either a memory of size at least Ω(k · l ), or at least 2Ω(r) samples. The result holds even if the learner has an exponentially small success probability (of 2−Ω(r)). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least Ω((log|X|) · (log|A|)) or an exponential number of samples, achieving a tight Ω((log|X|) · (log|A|)) lower bound on the size of the memory, rather than a bound of Ω(min{(log|X|)2,(log|A|)2}) obtained in previous works by Raz [FOCS’17] and Moshkovitz and Moshkovitz [ITCS’18]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on the work of Raz [FOCS’17] that gave a general technique for proving memory samples lower bounds.