Simple Method to Predict Downward Heat Flux from Flame to Floor

Yusuke Shintani, T. Nagaoka, Y. Deguchi, Kazuhiko Ido, K. Harada
{"title":"Simple Method to Predict Downward Heat Flux from Flame to Floor","authors":"Yusuke Shintani, T. Nagaoka, Y. Deguchi, Kazuhiko Ido, K. Harada","doi":"10.3210/FST.33.17","DOIUrl":null,"url":null,"abstract":"This work presents a simple model to predict the radiation heat flux from a flame to a floor surrounding it. This heat flux was measured both in an unconfined space (open air) and under a ceiling. Flame lengths, flame temperatures, and ceiling surface temperatures, all of which are necessary to predict radiation heat flux, were also measured. Flame shapes were modeled by two cylinders and two disks representing the impinging flame's continuous and intermittent flame regions. The emissivity of the cylinders was calculated from the heat balance at the flame surface, and the radiation heat flux to the floor was predicted well by the model.","PeriodicalId":12289,"journal":{"name":"Fire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Science and Technology","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3210/FST.33.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This work presents a simple model to predict the radiation heat flux from a flame to a floor surrounding it. This heat flux was measured both in an unconfined space (open air) and under a ceiling. Flame lengths, flame temperatures, and ceiling surface temperatures, all of which are necessary to predict radiation heat flux, were also measured. Flame shapes were modeled by two cylinders and two disks representing the impinging flame's continuous and intermittent flame regions. The emissivity of the cylinders was calculated from the heat balance at the flame surface, and the radiation heat flux to the floor was predicted well by the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
火焰到地面向下热流预测的简单方法
本文提出了一个简单的模型来预测火焰对周围地板的辐射热流。这一热流密度是在非密闭空间(露天)和天花板下测量的。火焰长度,火焰温度和天花板表面温度,所有这些都是预测辐射热流的必要条件,也进行了测量。火焰的形状由两个圆柱体和两个圆盘来表示碰撞火焰的连续和间歇火焰区域。根据火焰表面的热平衡计算了柱体的发射率,并对柱体地板的辐射热流密度进行了较好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chemical Fires Associated with Two Major Earthquakes in Japan Flame Retardant Waterborne Polyurethanes: Related Analytical Measurements The Early History of the Cone Calorimeter Modeling of Creep Behavior of High Strength Steel H-SA700 Columns at Elevated Temperature Analysis of Texts of Fire Accidents in University Chemistry Experiments Using AI Text Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1