MFO Algorithm for Optimal Location and Sizing of Multiple Photovoltaic Distributed Generations Units for Loss Reduction in Distribution Systems

Samir Settoul, R. Chenni, Heba Ahmed Hasan, M. Zellagui, M. Kraimia
{"title":"MFO Algorithm for Optimal Location and Sizing of Multiple Photovoltaic Distributed Generations Units for Loss Reduction in Distribution Systems","authors":"Samir Settoul, R. Chenni, Heba Ahmed Hasan, M. Zellagui, M. Kraimia","doi":"10.1109/IRSEC48032.2019.9078241","DOIUrl":null,"url":null,"abstract":"Renewable Energy Resources (RES) can supply a clean and a smart solution to satisfy the rapidly growing load demand. The Photovoltaic (PV) and wind turbines are considered as resources of Distributed Generation (DG). The integration of PV - DG units into distribution systems has a significant effect on reducing the system active power losses. In this paper, a new technique based on the Moth Flame Optimization (MFO) algorithm, is used to optimally allocate the PV -DG units in Radial Distribution Systems (RDSs) and determine the optimal size of each unit. The objective of the technique is to minimize the total active power losses of the system, while satisfying several operating constraints. The proposed optimization algorithm is tested using three different IEEE standard RDSs of various sizes, which are 33, 69 and 118-bus systems. In order to demonstrate the applicability and the performance of the MFO algorithm, numerical simulations are obtained when applying the MFO algorithm, and compared with different existing optimization techniques. This comparison shows the validity of the proposed MFO algorithm.","PeriodicalId":6671,"journal":{"name":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"76 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC48032.2019.9078241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Renewable Energy Resources (RES) can supply a clean and a smart solution to satisfy the rapidly growing load demand. The Photovoltaic (PV) and wind turbines are considered as resources of Distributed Generation (DG). The integration of PV - DG units into distribution systems has a significant effect on reducing the system active power losses. In this paper, a new technique based on the Moth Flame Optimization (MFO) algorithm, is used to optimally allocate the PV -DG units in Radial Distribution Systems (RDSs) and determine the optimal size of each unit. The objective of the technique is to minimize the total active power losses of the system, while satisfying several operating constraints. The proposed optimization algorithm is tested using three different IEEE standard RDSs of various sizes, which are 33, 69 and 118-bus systems. In order to demonstrate the applicability and the performance of the MFO algorithm, numerical simulations are obtained when applying the MFO algorithm, and compared with different existing optimization techniques. This comparison shows the validity of the proposed MFO algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电系统中多光伏分布式发电机组最优位置和最优规模的MFO算法
可再生能源(RES)可以提供一种清洁和智能的解决方案,以满足快速增长的负荷需求。光伏(PV)和风力涡轮机被认为是分布式发电(DG)的资源。将光伏发电机组并入配电系统对降低系统有功功率损耗具有重要的作用。本文提出了一种基于飞蛾火焰优化算法(MFO)的新技术,对径向配电系统中的光伏-DG机组进行优化配置,并确定各机组的最优尺寸。该技术的目标是最小化系统的总有功功率损耗,同时满足几个运行约束。采用三种不同尺寸的IEEE标准rds(33、69和118总线系统)对所提出的优化算法进行了测试。为了证明该算法的适用性和性能,在应用该算法时进行了数值模拟,并与现有的各种优化技术进行了比较。通过比较,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Impact of Rooftop Solar PV on Local Temperatures in Urban Areas Novel Stand Alone Solar Still Experimental Validation of an Electromechanical Device to Convert Vehicles Mechanical Energy into Electrical Energy Economic Comparison of Parabolic trough Collector and Linear Fresnel Reflectors Power Plants Maximum Power Point Tracking of Wind Turbine System Connection to Permanent Magnet Synchronous Generator using Fuzzy Logic and Artificial Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1