KINETIC STUDY ON HYDROTHERMAL COMPOSITION OF GLUCOSE IN NAOH SOLUTION WITH ZNO AS CATALYST

Bregas Siswahjono Tatag Sembodo, Addiva Febrioka, Adistya Hilga Pratiwi Aprilia
{"title":"KINETIC STUDY ON HYDROTHERMAL COMPOSITION OF GLUCOSE IN NAOH SOLUTION WITH ZNO AS CATALYST","authors":"Bregas Siswahjono Tatag Sembodo, Addiva Febrioka, Adistya Hilga Pratiwi Aprilia","doi":"10.20961/equilibrium.v5i1.53407","DOIUrl":null,"url":null,"abstract":"Hydrothermal liquifaction is a biomass conversion process, where the structure of the biomass is convert into liquid components under super critical conditions with a high temperature. In this study, glucose is used as biomass. The purpose of this study was to study the reaction kinetics and determine the hydrothermal decomposition of glucose in NaOH solution. This experiment used 10 grams of glucose and dissolve it in 80 mL of NaOH solution then put it in an autoclave. Experiments were carried out by varying the heating temperature carried out in an autoclave with a magnetic stirrer. After heating at various temperatures, the autoclave is immediately cooled down. The processed material is filtered to separate insoluble solids from the liquid phase. The solid residue that has been separated from the liquid phase is then dried in an oven at 105°C for 24 hours. The composition of the filtrate was analyzed using the GC-MS method and the glucose concentration was analyzed using the Lane Eynon method. Prior to GC-MS analysis, the filtrate was distilled at atmospheric pressure until a solid residue remained. The sample analyzed is the result of distillation with a temperature above 100°C to ensure that there is no water and residual glucose in the sample. The results of GC-MS analysis of product samples from the hydrothermal decomposition process had 3 peaks. The first peak shows the compound 1,3 Dipalmitin which has an area of 14.74%, the second peak shows the Olealdehyde compound which has an area of 32.35%, and the third peak shows the 1,2-Epoxyhexadecane compound which has an area of 52.91%. The kinetics results in hydrothermal decomposition of glucose in this experiment obtained a reaction order of 2 with an activation energy (Ea) of 15.91 KJ / mol and a pre-exponential factor of 66.12.","PeriodicalId":11866,"journal":{"name":"Equilibrium Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/equilibrium.v5i1.53407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrothermal liquifaction is a biomass conversion process, where the structure of the biomass is convert into liquid components under super critical conditions with a high temperature. In this study, glucose is used as biomass. The purpose of this study was to study the reaction kinetics and determine the hydrothermal decomposition of glucose in NaOH solution. This experiment used 10 grams of glucose and dissolve it in 80 mL of NaOH solution then put it in an autoclave. Experiments were carried out by varying the heating temperature carried out in an autoclave with a magnetic stirrer. After heating at various temperatures, the autoclave is immediately cooled down. The processed material is filtered to separate insoluble solids from the liquid phase. The solid residue that has been separated from the liquid phase is then dried in an oven at 105°C for 24 hours. The composition of the filtrate was analyzed using the GC-MS method and the glucose concentration was analyzed using the Lane Eynon method. Prior to GC-MS analysis, the filtrate was distilled at atmospheric pressure until a solid residue remained. The sample analyzed is the result of distillation with a temperature above 100°C to ensure that there is no water and residual glucose in the sample. The results of GC-MS analysis of product samples from the hydrothermal decomposition process had 3 peaks. The first peak shows the compound 1,3 Dipalmitin which has an area of 14.74%, the second peak shows the Olealdehyde compound which has an area of 32.35%, and the third peak shows the 1,2-Epoxyhexadecane compound which has an area of 52.91%. The kinetics results in hydrothermal decomposition of glucose in this experiment obtained a reaction order of 2 with an activation energy (Ea) of 15.91 KJ / mol and a pre-exponential factor of 66.12.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌催化下葡萄糖在naoh溶液中水热合成的动力学研究
水热液化是在高温的超临界条件下将生物质的结构转化为液体组分的生物质转化过程。在本研究中,葡萄糖被用作生物质。本研究的目的是研究葡萄糖在氢氧化钠溶液中水热分解的反应动力学,并测定其分解速率。本实验取10g葡萄糖,溶解于80ml NaOH溶液中,放入高压釜中。实验是通过改变加热温度进行的热压釜与磁力搅拌器。在不同温度下加热后,高压灭菌器立即冷却。经过过滤的物料将不溶性固体从液相中分离出来。从液相中分离出来的固体残渣在105℃的烤箱中干燥24小时。采用气相色谱-质谱法分析滤液组成,Lane Eynon法分析葡萄糖浓度。在GC-MS分析之前,滤液在常压下蒸馏,直到留下固体残留物。所分析的样品是在100℃以上的温度下蒸馏的结果,以确保样品中没有水和残留的葡萄糖。水热分解产物样品的GC-MS分析结果有3个峰。第一个峰为1,3双棕榈素,面积为14.74%;第二个峰为油醛,面积为32.35%;第三个峰为1,2-环氧十六烷,面积为52.91%。本实验葡萄糖水热分解动力学结果为2级反应,活化能(Ea)为15.91 KJ / mol,指前因子为66.12。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness of Activated Carbon from Jackfruit Skin for The Heavy Metal Lead (Pb) Adsorption Using The Langmuir and Freundlich Equations Utilization of Tofu Liquid Waste as Liquid Organic Fertilizer Using the Fermentation Method with Activator Effective Microorganisms 4 (EM-4): A Review Producing Gel With Various Ingredients: a Review Glucose Syrup from Purple Sweet Potatoes (Ipomoea batatas L. Poir) using Acid Hydrolysis Method Simulation of Gas Sweetening Process using Extended NRTL and Stages Efficiency as Modeling Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1