Associating gene functional groups with multiple clinical conditions using Jaccard similarity

N. A. Yousri, D. Elkaffash
{"title":"Associating gene functional groups with multiple clinical conditions using Jaccard similarity","authors":"N. A. Yousri, D. Elkaffash","doi":"10.1109/BIBMW.2011.6112381","DOIUrl":null,"url":null,"abstract":"Gene expression arrays provide a rich source of information on the behaviour of thousands of genes for several clinical conditions in a particular tumor/cancer. Such expression sets when integrated with functional classification of genes enrich information provided from both sources. Stemming from the need to score relations between functional groups of genes and multiple clinical types associated with a tumor, this study proposes to use Jaccard similarity. For any set of genes, this measure can be used to measure the association between two sets of gene classes/groups, obtained from two different sources of information. In the proposed study, we particularly consider subsets of overexpressing genes in cancer expression sets. This enables the identification of unique genes and associate their most correlated sample clinical types to their functional groups. Experiments on a breast cancer expression set are done to illustrate the use of the proposed measure.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"8 1","pages":"241-246"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Gene expression arrays provide a rich source of information on the behaviour of thousands of genes for several clinical conditions in a particular tumor/cancer. Such expression sets when integrated with functional classification of genes enrich information provided from both sources. Stemming from the need to score relations between functional groups of genes and multiple clinical types associated with a tumor, this study proposes to use Jaccard similarity. For any set of genes, this measure can be used to measure the association between two sets of gene classes/groups, obtained from two different sources of information. In the proposed study, we particularly consider subsets of overexpressing genes in cancer expression sets. This enables the identification of unique genes and associate their most correlated sample clinical types to their functional groups. Experiments on a breast cancer expression set are done to illustrate the use of the proposed measure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Jaccard相似性将基因功能群与多种临床条件联系起来
基因表达阵列为特定肿瘤/癌症的几种临床条件下数千个基因的行为提供了丰富的信息来源。这种表达集与基因的功能分类相结合,丰富了两种来源提供的信息。由于需要对与肿瘤相关的基因功能群和多种临床类型之间的关系进行评分,本研究建议使用Jaccard相似性。对于任何一组基因,这一措施可以用来衡量两组基因类别/组之间的关联,从两个不同的信息来源获得。在提出的研究中,我们特别考虑了癌症表达集中过表达基因的亚群。这使得鉴定独特的基因,并将其最相关的样本临床类型与其功能群联系起来。在乳腺癌表达集上做了实验,以说明所提出的措施的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolution of protein architectures inferred from phylogenomic analysis of CATH Hierarchical modeling of alternative exon usage associations with survival 3D point cloud sensors for low-cost medical in-situ visualization Bayesian Classifiers for Chemical Toxicity Prediction Normal mode analysis of protein structure dynamics based on residue contact energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1