Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs

Emilija Perkovic, J. Textor, M. Kalisch, M. Maathuis
{"title":"Complete Graphical Characterization and Construction of Adjustment Sets in Markov Equivalence Classes of Ancestral Graphs","authors":"Emilija Perkovic, J. Textor, M. Kalisch, M. Maathuis","doi":"10.3929/ETHZ-B-000278021","DOIUrl":null,"url":null,"abstract":"We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all (minimal) sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide a new, elementary soundness proof for the adjustment criterion for DAGs of Shpitser, VanderWeele and Robins (UAI 2010).","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"91 1","pages":"220:1-220:62"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000278021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

We present a graphical criterion for covariate adjustment that is sound and complete for four different classes of causal graphical models: directed acyclic graphs (DAGs), maximum ancestral graphs (MAGs), completed partially directed acyclic graphs (CPDAGs), and partial ancestral graphs (PAGs). Our criterion unifies covariate adjustment for a large set of graph classes. Moreover, we define an explicit set that satisfies our criterion, if there is any set that satisfies our criterion. We also give efficient algorithms for constructing all (minimal) sets that fulfill our criterion, implemented in the R package dagitty. Finally, we discuss the relationship between our criterion and other criteria for adjustment, and we provide a new, elementary soundness proof for the adjustment criterion for DAGs of Shpitser, VanderWeele and Robins (UAI 2010).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
祖先图的马尔可夫等价类平差集的完全图形刻画与构造
我们提出了一个对四种不同类型的因果图模型:有向无环图(dag)、最大祖先图(MAGs)、完全部分有向无环图(cpdag)和部分祖先图(PAGs)进行协变量调整的图形准则。我们的准则统一了大量图类的协变量调整。此外,如果存在满足我们准则的集合,我们定义一个满足我们准则的显式集合。我们还给出了构造满足我们标准的所有(最小)集的有效算法,并在R包中实现。最后,我们讨论了我们的平差准则与其他平差准则之间的关系,并为Shpitser, VanderWeele和Robins (UAI 2010)的dag平差准则提供了一个新的、初步的合理性证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1