{"title":"CFD Analysis for Heat Transfer Enhancement inside a Circular Tube with Half-Length Upstream and Half-Length Downstream Twisted Tape","authors":"Rupesh Yadav, A. Padalkar","doi":"10.1155/2012/580593","DOIUrl":null,"url":null,"abstract":"CFD investigation was carried out to study the heat transfer enhancement characteristics of air flow inside a circular tube with a partially decaying and partly swirl flow. Four combinations of tube with twisted-tape inserts, the half-length upstream twisted-tape condition (HLUTT), the half-length downstream twisted-tape condition (HLDTT), the full-length twisted tape (FLTT), and the plain tube (PT) with three different twist parameters (, 0.27, and 0.38) have been investigated. 3D numerical simulation was performed for an analysis of heat transfer enhancement and fluid flow for turbulent regime. The results of CFD investigations of heat transfer and friction characteristics are presented for the FLTT, HLUTT, and the HLDTT in comparison with the PT case.","PeriodicalId":17290,"journal":{"name":"Journal of Thermodynamics","volume":"69 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/580593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
CFD investigation was carried out to study the heat transfer enhancement characteristics of air flow inside a circular tube with a partially decaying and partly swirl flow. Four combinations of tube with twisted-tape inserts, the half-length upstream twisted-tape condition (HLUTT), the half-length downstream twisted-tape condition (HLDTT), the full-length twisted tape (FLTT), and the plain tube (PT) with three different twist parameters (, 0.27, and 0.38) have been investigated. 3D numerical simulation was performed for an analysis of heat transfer enhancement and fluid flow for turbulent regime. The results of CFD investigations of heat transfer and friction characteristics are presented for the FLTT, HLUTT, and the HLDTT in comparison with the PT case.