Jyoti Gajrani, Li Li, V. Laxmi, Meenakshi Tripathi, M. Gaur, M. Conti
{"title":"Detection of Information Leaks via Reflection in Android Apps","authors":"Jyoti Gajrani, Li Li, V. Laxmi, Meenakshi Tripathi, M. Gaur, M. Conti","doi":"10.1145/3052973.3055162","DOIUrl":null,"url":null,"abstract":"Reflection is a language feature which allows to analyze and transform the behavior of classes at the runtime. Reflection is used for software debugging and testing. Malware authors can leverage reflection to subvert the malware detection by static analyzers. Reflection initializes the class, invokes any method of class, or accesses any field of class. But, instead of utilizing usual programming language syntax, reflection passes classes/methods etc. as parameters to reflective APIs. As a consequence, these parameters can be constructed dynamically or can be encrypted by malware. These cannot be detected by state-of-the-art static tools. We propose EspyDroid, a system that combines dynamic analysis with code instrumentation for a more precise and automated detection of malware employing reflection. We evaluate EspyDroid on 28 benchmark apps employing major reflection categories. Our technique show improved results over FlowDroid via detection of additional undetected flows. These flows have potential to leak sensitive and private information of the users, through various sinks.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3055162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Reflection is a language feature which allows to analyze and transform the behavior of classes at the runtime. Reflection is used for software debugging and testing. Malware authors can leverage reflection to subvert the malware detection by static analyzers. Reflection initializes the class, invokes any method of class, or accesses any field of class. But, instead of utilizing usual programming language syntax, reflection passes classes/methods etc. as parameters to reflective APIs. As a consequence, these parameters can be constructed dynamically or can be encrypted by malware. These cannot be detected by state-of-the-art static tools. We propose EspyDroid, a system that combines dynamic analysis with code instrumentation for a more precise and automated detection of malware employing reflection. We evaluate EspyDroid on 28 benchmark apps employing major reflection categories. Our technique show improved results over FlowDroid via detection of additional undetected flows. These flows have potential to leak sensitive and private information of the users, through various sinks.