AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images

Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang
{"title":"AG-ResUNet++: An Improved Encoder-Decoder Based Method for Polyp Segmentation in Colonoscopy Images","authors":"Nguyen Ba Hung, Thanh Duc Nguyen, Thai Van Chien, D. V. Sang","doi":"10.1109/RIVF51545.2021.9642070","DOIUrl":null,"url":null,"abstract":"Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.","PeriodicalId":6860,"journal":{"name":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 RIVF International Conference on Computing and Communication Technologies (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF51545.2021.9642070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Colorectal cancer is one of the most prevalent causes of cancer-related death. Early polyp segmentation in colonoscopy is helpful in diagnosing and preventing colorectal cancer. However, this task a challenging due to variations in the appearance of polyps. This paper proposes a new encoder-decoder-based method called AG-ResUNet++ that leverages attention gate mechanism and residual connections to enhance the performance of the existing UNet++ model in the polyp segmentation task. Our method considerably outperforms other state-of-the-art methods on the popular polyp segmentation datasets, including KvasirSEG and CVC-612.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ag - resunet++:一种改进的基于编码器-解码器的结肠镜图像息肉分割方法
结直肠癌是癌症相关死亡的最普遍原因之一。结肠镜下早期息肉分割有助于结直肠癌的诊断和预防。然而,由于息肉外观的变化,这项任务具有挑战性。本文提出了一种新的基于编码器-解码器的方法ag - reun++,该方法利用注意门机制和剩余连接来提高现有un++模型在息肉分割任务中的性能。我们的方法在流行的息肉分割数据集上显著优于其他最先进的方法,包括KvasirSEG和CVC-612。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Image Watermarking Scheme Using LU Decomposition Streaming Algorithm for Submodular Cover Problem Under Noise Hand part segmentations in hand mask of egocentric images using Distance Transformation Map and SVM Classifier Multiple Imputation by Generative Adversarial Networks for Classification with Incomplete Data MC-OCR Challenge 2021: Simple approach for receipt information extraction and quality evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1