Identification of MicroRNA Precursors via SVM

L. Yang, W. Hsu, M. Lee, L. Wong
{"title":"Identification of MicroRNA Precursors via SVM","authors":"L. Yang, W. Hsu, M. Lee, L. Wong","doi":"10.1142/9781860947292_0030","DOIUrl":null,"url":null,"abstract":"MiRNAs are short non-coding RNAs that regulate gene expression. While the first miRNAs were discovered using experimental methods, experimental miRNA identification remains technically challenging and incomplete. This calls for the development of computational approaches to complement experimental approaches to miRNA gene identification. We pr opose in this paper a de novo miRNA precursor prediction method. This method follows the “feature generation, feature selection, and feature integration” paradigm of constructing recognition models for genomics sequences. We generate and identified features based on information in both primary sequence and secondary structure, and use these features to construct SVM-based models for the recognition of miRNA precursors. Experimental results show that our method is effective, and can achieve good sensitivity and specificity.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"33 1","pages":"267-276"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

MiRNAs are short non-coding RNAs that regulate gene expression. While the first miRNAs were discovered using experimental methods, experimental miRNA identification remains technically challenging and incomplete. This calls for the development of computational approaches to complement experimental approaches to miRNA gene identification. We pr opose in this paper a de novo miRNA precursor prediction method. This method follows the “feature generation, feature selection, and feature integration” paradigm of constructing recognition models for genomics sequences. We generate and identified features based on information in both primary sequence and secondary structure, and use these features to construct SVM-based models for the recognition of miRNA precursors. Experimental results show that our method is effective, and can achieve good sensitivity and specificity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的MicroRNA前体鉴定
mirna是调节基因表达的短非编码rna。虽然第一个miRNA是通过实验方法发现的,但实验miRNA鉴定在技术上仍然具有挑战性和不完整。这就要求开发计算方法来补充miRNA基因鉴定的实验方法。本文提出了一种新的miRNA前体预测方法。该方法遵循构建基因组序列识别模型的“特征生成、特征选择和特征集成”范式。我们基于一级序列和二级结构的信息生成和识别特征,并使用这些特征构建基于支持向量机的模型来识别miRNA前体。实验结果表明,该方法是有效的,具有良好的灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning Privacy-Utility Tradeoff in Genomic Studies Using Selective SNP Hiding. The Future of Bioinformatics CHEMICAL COMPOUND CLASSIFICATION WITH AUTOMATICALLY MINED STRUCTURE PATTERNS. Predicting Nucleolar Proteins Using Support-Vector Machines Proceedings of the 6th Asia-Pacific Bioinformatics Conference, APBC 2008, 14-17 January 2008, Kyoto, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1