A sparse grid approach to balance sheet risk measurement

Cyril Bénézet, J. Bonnefoy, J. Chassagneux, Shuoqing Deng, Camilo A. Garcia Trillos, L. Lenôtre
{"title":"A sparse grid approach to balance sheet risk measurement","authors":"Cyril Bénézet, J. Bonnefoy, J. Chassagneux, Shuoqing Deng, Camilo A. Garcia Trillos, L. Lenôtre","doi":"10.1051/PROC/201965236","DOIUrl":null,"url":null,"abstract":"In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & choles model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/201965236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a numerical method based on a sparse grid approximation to compute the loss distribution of the balance sheet of a financial or an insurance company. We first describe, in a stylised way, the assets and liabilities dynamics that are used for the numerical estimation of the balance sheet distribution. For the pricing and hedging model, we chose a classical Black & choles model with a stochastic interest rate following a Hull & White model. The risk management model describing the evolution of the parameters of the pricing and hedging model is a Gaussian model. The new numerical method is compared with the traditional nested simulation approach. We review the convergence of both methods to estimate the risk indicators under consideration. Finally, we provide numerical results showing that the sparse grid approach is extremely competitive for models with moderate dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资产负债表风险度量的稀疏网格方法
在这项工作中,我们提出了一种基于稀疏网格近似的数值方法来计算金融或保险公司资产负债表的损失分布。我们首先以一种程式化的方式描述用于对资产负债表分布进行数值估计的资产和负债动态。对于定价和套期保值模型,我们在赫尔和怀特模型的基础上选择了具有随机利率的经典Black & choles模型。描述定价和套期保值模型参数演化的风险管理模型是高斯模型。并与传统的嵌套模拟方法进行了比较。我们回顾了两种方法的收敛性,以估计所考虑的风险指标。最后,我们提供的数值结果表明,稀疏网格方法对中等维数的模型极具竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena Study of relaxation processes in a two-phase flow model Accelerating metabolic models evaluation with statistical metamodels: application to Salmonella infection models Mortensen observer for a class of variational inequalities – lost equivalence with stochastic filtering approaches Comparison of statistical, machine learning, and mathematical modelling methods to investigate the effect of ageing on dog’s cardiovascular system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1