Using autoregressive neural network with external input for calculation of expected carbon dioxide surface concentration for different time intervals

A. Sergeev, E. Baglaeva, A. Shichkin, A. Buevich, A. Rakhmatova, A. Kosachenko, A. Moskaleva, M. Sergeeva
{"title":"Using autoregressive neural network with external input for calculation of expected carbon dioxide surface concentration for different time intervals","authors":"A. Sergeev, E. Baglaeva, A. Shichkin, A. Buevich, A. Rakhmatova, A. Kosachenko, A. Moskaleva, M. Sergeeva","doi":"10.1063/1.5137946","DOIUrl":null,"url":null,"abstract":"The results of the prediction of a model based on an artificial neural network were compared to predict the concentration of carbon dioxide (CO2) in the surface layer of the atmosphere for different time intervals. Measurements were taken on the Arctic island of Belyy, Russia. For comparison, three time intervals were used, which differed in the dependence of carbon dioxide concentration on the time of day. A non-linear autoregressive neural network with external input (NARX) was used. The model based on NARX successfully coped with the prediction. The smallest error was for the time intervals with a strong dependence of CO2 concentration on the time of day.","PeriodicalId":20565,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2019 (ICCMSE-2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5137946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The results of the prediction of a model based on an artificial neural network were compared to predict the concentration of carbon dioxide (CO2) in the surface layer of the atmosphere for different time intervals. Measurements were taken on the Arctic island of Belyy, Russia. For comparison, three time intervals were used, which differed in the dependence of carbon dioxide concentration on the time of day. A non-linear autoregressive neural network with external input (NARX) was used. The model based on NARX successfully coped with the prediction. The smallest error was for the time intervals with a strong dependence of CO2 concentration on the time of day.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带外部输入的自回归神经网络计算不同时间间隔的预期二氧化碳表面浓度
将基于人工神经网络模型的预测结果进行了比较,以预测不同时间间隔大气表层二氧化碳浓度。测量是在俄罗斯的贝利北极岛进行的。为了进行比较,使用了三个时间间隔,这三个时间间隔在二氧化碳浓度对一天中的时间的依赖性方面有所不同。采用带外部输入的非线性自回归神经网络(NARX)。基于NARX的模型成功地应对了预测。误差最小的是CO2浓度与一天中的时间密切相关的时间间隔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selected time space characteristics in female pole vault Wave polarisation in a dynamic elastic lattice Symbolic-numeric research of leaky modes in planar dielectric electromagnetic waveguide as inhomogeneous waves Derivation of the concepts in data modelling Preface of the “GIS, Remote Sensing and Dendrochronology in Geohazards”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1