Experimental assessment and compressive constitutive model of rubberized concrete confined by steel tube

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Progress in Rubber Plastics and Recycling Technology Pub Date : 2023-06-05 DOI:10.1177/14777606231181414
Zhihui Zhou, Wei Huang, Xiaodong Wang
{"title":"Experimental assessment and compressive constitutive model of rubberized concrete confined by steel tube","authors":"Zhihui Zhou, Wei Huang, Xiaodong Wang","doi":"10.1177/14777606231181414","DOIUrl":null,"url":null,"abstract":"To investigate the confining effect and axial compressive behavior of rubberized concrete (RuC) confined by steel tube, axial compression tests were carried out on 12 circular RuC cylinders confined by steel tube. The cylinders considered parameters such as steel tube thicknesses (2 mm, 3 mm, 4 mm) and rubber volume replacement ratios of the fine aggregates (0%, 10%, 20%, and 30%). It was observed that the compressive strength of RuC decreases as the rubber volume replacement ratio increases. However, an increase in steel tube thickness enhances the confining effect of the core RuC, leading to an increase in its compressive strength and the corresponding strain, similar to that of conventional concrete. Moreover, post-peak curves are more likely to exhibit a strengthening part in confined concrete with more rubber content. Furthermore, a model was developed to determine the compressive strength of RuC confined by steel tube. Finally, an axial stress-strain model of steel tube confined RuC was proposed, which was validated against test results.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"46 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606231181414","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate the confining effect and axial compressive behavior of rubberized concrete (RuC) confined by steel tube, axial compression tests were carried out on 12 circular RuC cylinders confined by steel tube. The cylinders considered parameters such as steel tube thicknesses (2 mm, 3 mm, 4 mm) and rubber volume replacement ratios of the fine aggregates (0%, 10%, 20%, and 30%). It was observed that the compressive strength of RuC decreases as the rubber volume replacement ratio increases. However, an increase in steel tube thickness enhances the confining effect of the core RuC, leading to an increase in its compressive strength and the corresponding strain, similar to that of conventional concrete. Moreover, post-peak curves are more likely to exhibit a strengthening part in confined concrete with more rubber content. Furthermore, a model was developed to determine the compressive strength of RuC confined by steel tube. Finally, an axial stress-strain model of steel tube confined RuC was proposed, which was validated against test results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢管约束下橡胶混凝土的试验评定及压缩本构模型
为研究钢管约束下橡胶混凝土的围压效果及轴压性能,对12个钢管约束下橡胶混凝土圆柱体进行了轴压试验。圆柱体考虑了诸如钢管厚度(2mm, 3mm, 4mm)和细集料的橡胶体积替代率(0%,10%,20%和30%)等参数。结果表明,RuC的抗压强度随橡胶体积替代率的增加而降低。然而,增加钢管厚度会增强核心RuC的围合效果,导致其抗压强度和相应的应变增加,与常规混凝土相似。此外,峰后曲线更有可能在橡胶含量较高的约束混凝土中表现出加强部分。在此基础上,建立了钢管约束下混凝土的抗压强度计算模型。最后,建立了钢管承压RuC轴向应力-应变模型,并与试验结果进行了对比验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Rubber Plastics and Recycling Technology
Progress in Rubber Plastics and Recycling Technology MATERIALS SCIENCE, COMPOSITES-POLYMER SCIENCE
CiteScore
4.40
自引率
7.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.
期刊最新文献
Characterization and application of composite resin of natural rubber latex and polystyrene waste as a binder for water-resistant emulsion paint formulation Lignin dispersion in polybutadiene rubber (BR) with different mixing parameters Comparative study: High performance polymers of polyphenylene sulfide and polyethylenimine using Taguchi-Topsis optimization approaches Contribution of geometrical infill pattern on mechanical behaviour of 3D manufactured polylactic acid specimen: Experimental and numerical analysis Non-linear mechanical behaviour of thermoplastic elastomeric materials and its vulcanizate under tension/tension fatigue deformation by fourier transform rheological studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1