Revisiting Bluetooth Adaptive Frequency Hopping Prediction with a Ubertooth

Janggoon Lee, Chanhee Park, Heejun Roh
{"title":"Revisiting Bluetooth Adaptive Frequency Hopping Prediction with a Ubertooth","authors":"Janggoon Lee, Chanhee Park, Heejun Roh","doi":"10.1109/ICOIN50884.2021.9333996","DOIUrl":null,"url":null,"abstract":"Due to frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices is a challenging problem. To this end, a state-of-the-art low-cost sniffing system employing two cheap Ubertooth devices [1], proposes machine learning-based prediction technique for adaptive frequency hopping (AFH) map by collecting packet statistics and spectrum sensing. In this paper, we revisit the AFH prediction problem. Our intention of this approach is that proposing better way to label data set to train Support Vector Machine (SVM) that could be done without measuring packet rates by visiting all 79 channels. We build a prototype of AFH prediction technique with a Ubertooth and a SVM. Our result shows that high accuracy can be achieved without the packet-based classifier of BlueEar.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"26 1","pages":"715-717"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-cost devices is a challenging problem. To this end, a state-of-the-art low-cost sniffing system employing two cheap Ubertooth devices [1], proposes machine learning-based prediction technique for adaptive frequency hopping (AFH) map by collecting packet statistics and spectrum sensing. In this paper, we revisit the AFH prediction problem. Our intention of this approach is that proposing better way to label data set to train Support Vector Machine (SVM) that could be done without measuring packet rates by visiting all 79 channels. We build a prototype of AFH prediction technique with a Ubertooth and a SVM. Our result shows that high accuracy can be achieved without the packet-based classifier of BlueEar.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Ubertooth重新研究蓝牙自适应跳频预测
由于蓝牙的跳频特性,用低成本设备嗅探蓝牙通信是一个具有挑战性的问题。为此,一种采用两个廉价Ubertooth设备的最先进的低成本嗅探系统[1]提出了基于机器学习的自适应跳频(AFH)地图预测技术,该技术通过收集数据包统计数据和频谱感知。在本文中,我们重新讨论了AFH预测问题。这种方法的目的是提出一种更好的方法来标记数据集来训练支持向量机(SVM),这种方法可以在不通过访问所有79个通道来测量数据包速率的情况下完成。我们用Ubertooth和SVM构建了AFH预测技术的原型。结果表明,在不使用BlueEar的分组分类器的情况下,也能达到较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1