{"title":"Ultra-low power multi-channel data conversion with a single SAR ADC for mobile sensing applications","authors":"Wenjuan Guo, Youngchun Kim, A. Tewfik, Nan Sun","doi":"10.1109/CICC.2015.7338492","DOIUrl":null,"url":null,"abstract":"Based on the recently emerging compressive sensing theory, the paper proposes an ultra-low power multichannel data conversion system whose architecture is almost as simple as a single SAR ADC. The proposed architecture is capable of simultaneously converting multi-channel sparse signals while running at the Nyquist rate of only one channel. A chip is fabricated in a 0.13μm CMOS process. Operating at 1MS/s, the SAR ADC itself achieves a 66dB SNDR and a 25fJ/step FoM at 0.8V. Using convex optimization methods, 4-channel 500kHz-bandwidth signals can be reconstructed with a 66dB peak SNDR and a 41% max occupancy, leading to an effective FoM per channel of 6.25 fJ/step.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"26 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Based on the recently emerging compressive sensing theory, the paper proposes an ultra-low power multichannel data conversion system whose architecture is almost as simple as a single SAR ADC. The proposed architecture is capable of simultaneously converting multi-channel sparse signals while running at the Nyquist rate of only one channel. A chip is fabricated in a 0.13μm CMOS process. Operating at 1MS/s, the SAR ADC itself achieves a 66dB SNDR and a 25fJ/step FoM at 0.8V. Using convex optimization methods, 4-channel 500kHz-bandwidth signals can be reconstructed with a 66dB peak SNDR and a 41% max occupancy, leading to an effective FoM per channel of 6.25 fJ/step.