Electric Modulus Analysis of (1 − x) PbMg1/3Nb2/3O3-(x)K1/2Bi1/2TiO3 Ceramics

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Advances in Condensed Matter Physics Pub Date : 2022-03-22 DOI:10.1155/2022/2450578
K. Legesse, Vijaya Bhaskar Rao Poluri, Elangovan Sampandam
{"title":"Electric Modulus Analysis of (1 − x) PbMg1/3Nb2/3O3-(x)K1/2Bi1/2TiO3 Ceramics","authors":"K. Legesse, Vijaya Bhaskar Rao Poluri, Elangovan Sampandam","doi":"10.1155/2022/2450578","DOIUrl":null,"url":null,"abstract":"Ferroelectrics refer to groups of dielectrics having the property of spontaneous polarization. Lead magnesium niobate-potassium bismuth titanate ((1 − x) PbMg1/3Nb2/3O3-(x)K1/2Bi1/2TiO3)) x = 0.15, 0.25, and 0.35 are prepared by solid-state reaction rout technique. The electric modulus of the prepared samples is studied using the complex impedance spectroscopic method at 400°C, 450°C, and 500°C in various frequency ranges. In the lower frequency range, the real modulus (M′ (ω)) decreased with increasing the temperature. Furthermore, the real modulus (M′ (ω)) increased with increasing frequency and the concentration of the doping component. The imaginary modulus (M″ (ω)) increased with increasing the temperature. The significant variations in the real and imaginary coefficients signify the existence of thermally activated dielectric relaxation between the selected components. Moreover, the magnitude of grain capacitance increased with increasing the temperature, confirming the negative temperature coefficient of resistance of the material.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/2450578","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectrics refer to groups of dielectrics having the property of spontaneous polarization. Lead magnesium niobate-potassium bismuth titanate ((1 − x) PbMg1/3Nb2/3O3-(x)K1/2Bi1/2TiO3)) x = 0.15, 0.25, and 0.35 are prepared by solid-state reaction rout technique. The electric modulus of the prepared samples is studied using the complex impedance spectroscopic method at 400°C, 450°C, and 500°C in various frequency ranges. In the lower frequency range, the real modulus (M′ (ω)) decreased with increasing the temperature. Furthermore, the real modulus (M′ (ω)) increased with increasing frequency and the concentration of the doping component. The imaginary modulus (M″ (ω)) increased with increasing the temperature. The significant variations in the real and imaginary coefficients signify the existence of thermally activated dielectric relaxation between the selected components. Moreover, the magnitude of grain capacitance increased with increasing the temperature, confirming the negative temperature coefficient of resistance of the material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(1−x) PbMg1/3Nb2/3O3-(x)K1/2Bi1/2TiO3陶瓷的电模量分析
铁电体是指具有自发极化特性的介电体群。采用固相反应路由技术制备了铌镁铅-钛酸铋钾((1−x) pbm1 / 3nb2 / 3o3 -(x)K1/2Bi1/2TiO3) x = 0.15、0.25和0.35。采用复阻抗谱法对制备的样品在400°C、450°C和500°C不同频率范围内的电模量进行了研究。在低频范围内,实模量(M′(ω))随温度的升高而减小。实模量(M′(ω))随掺杂频率和掺杂浓度的增加而增加。虚模量(M″(ω))随温度的升高而增大。实系数和虚系数的显著变化表明在所选组分之间存在热激活的介电弛豫。晶粒电容的大小随温度的升高而增大,证实了材料的电阻温度系数为负。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
期刊最新文献
The Effect of Pressure Variations on the Electronic Structure, Phonon, and Superconducting Properties of Yttrium Hydrogen Selenide Compound Unlocking the Magnetic and Half-Metallic Properties of AMY2 (A = Cu, Ag; M = Sc, Ti, V, Cr, Mn, Fe; Y = S, Se) Compounds in Chalcopyrite Structure: An Ab Initio Study for Spintronics Applications The Optimal Doping Ratio of Fe2O3 for Enhancing the Electrochemical Stability of Zeolitic Imidazolate Framework-8 for Energy Storage Devices Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties Electron Transport Properties of Eu(Cu1 − xAgx)2Si2 (0 ≤ x ≤ 1): Initiation of Transition Eu2+ ↔ Eu2.41+ in the Intermediate Valence State
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1