Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential

M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh
{"title":"Triangular Equilibria in R3BP under the Consideration of Yukawa Correction to Newtonian Potential","authors":"M. J. Idrisi, Teklehaimanot Eshetie, Tenaw Tilahun, Mitiku Kerebh","doi":"10.1155/2022/4072418","DOIUrl":null,"url":null,"abstract":"<jats:p>We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>α</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the coupling constant of Yukawa force to gravitational force, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>0</mn>\n <mrow>\n <mo>,</mo>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is the range of Yukawa force. It is observed that as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>, the mean-motion of the primaries <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>n</mi>\n <mo>⟶</mo>\n <msup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>α</mi>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>λ</mi>\n <mo>⟶</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>n</mi>\n <mo>⟶</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>. Further, it is observed that the mean-motion is unity, i.e., <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mi>n</mi>\n <mo>></mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>α</mi>\n <mo>></mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mi>n</mi>\n <mo><</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula> when <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>α</mi>\n <mo><</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>. The triangular equilibria are not affected by <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> and remain the same as in the classical case of restricted three-body problem. But, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\">\n <mi>λ</mi>\n </math>\n </jats:inline-formula> affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>+</mo>\n <mi>f</mi>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>α</mi>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0385209</mn>\n <mo>⋯</mo>\n </math>\n </jats:inline-formula> is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\">\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <msub>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> either for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\">\n <mi>α</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> or <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>0.618034</mn>\n </math>\n </jats:inline-formula>, and the critical mass parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\">\n ","PeriodicalId":14766,"journal":{"name":"J. Appl. Math.","volume":"44 1","pages":"4072418:1-4072418:6"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/4072418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the triangular equilibrium points in the framework of Yukawa correction to Newtonian potential in the circular restricted three-body problem. The effects of α and λ on the mean-motion of the primaries and on the existence and stability of triangular equilibrium points are analyzed, where α 1 , 1 is the coupling constant of Yukawa force to gravitational force, and λ 0 , is the range of Yukawa force. It is observed that as λ , the mean-motion of the primaries n 1 + α 1 / 2 and as λ 0 , n 1 . Further, it is observed that the mean-motion is unity, i.e., n = 1 for α = 0 , n > 1 if α > 0 and n < 1 when α < 0 . The triangular equilibria are not affected by α and λ and remain the same as in the classical case of restricted three-body problem. But, α and λ affect the stability of these triangular equilibria in linear sense. It is found that the triangular equilibria are stable for a critical mass parameter μ c = μ 0 + f α , λ , where μ 0 = 0.0385209 is the value of critical mass parameter in the classical case of restricted three-body problem. It is also observed that μ c = μ 0 either for α = 0 or λ = 0.618034 , and the critical mass parameter
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑汤川势修正的R3BP中的三角均衡
0385209⋯⋯是限制三体问题经典情况下的临界质量参数值。我们还观察到μ c = μ 0对于α = 0或λ = 0.618034,和临界质量参数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Malaria Control Strategy: Optimal Control and Cost-Effectiveness Analysis on the Impact of Vector Bias on the Efficacy of Mosquito Repellent and Hospitalization Analytical Approximate Solutions of Caputo Fractional KdV-Burgers Equations Using Laplace Residual Power Series Technique An Efficient New Technique for Solving Nonlinear Problems Involving the Conformable Fractional Derivatives Application of Improved WOA in Hammerstein Parameter Resolution Problems under Advanced Mathematical Theory Intelligent Optimization Model of Enterprise Financial Account Receivable Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1