Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs

Konstantin Tretyakov, Abel Armas-Cervantes, L. García-Bañuelos, J. Vilo, M. Dumas
{"title":"Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs","authors":"Konstantin Tretyakov, Abel Armas-Cervantes, L. García-Bañuelos, J. Vilo, M. Dumas","doi":"10.1145/2063576.2063834","DOIUrl":null,"url":null,"abstract":"Computing the shortest path between a pair of vertices in a graph is a fundamental primitive in graph algorithmics. Classical exact methods for this problem do not scale up to contemporary, rapidly evolving social networks with hundreds of millions of users and billions of connections. A number of approximate methods have been proposed, including several landmark-based methods that have been shown to scale up to very large graphs with acceptable accuracy. This paper presents two improvements to existing landmark-based shortest path estimation methods. The first improvement relates to the use of shortest-path trees (SPTs). Together with appropriate short-cutting heuristics, the use of SPTs allows to achieve higher accuracy with acceptable time and memory overhead. Furthermore, SPTs can be maintained incrementally under edge insertions and deletions, which allows for a fully-dynamic algorithm. The second improvement is a new landmark selection strategy that seeks to maximize the coverage of all shortest paths by the selected landmarks. The improved method is evaluated on the DBLP, Orkut, Twitter and Skype social networks.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"15 1","pages":"1785-1794"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

Computing the shortest path between a pair of vertices in a graph is a fundamental primitive in graph algorithmics. Classical exact methods for this problem do not scale up to contemporary, rapidly evolving social networks with hundreds of millions of users and billions of connections. A number of approximate methods have been proposed, including several landmark-based methods that have been shown to scale up to very large graphs with acceptable accuracy. This paper presents two improvements to existing landmark-based shortest path estimation methods. The first improvement relates to the use of shortest-path trees (SPTs). Together with appropriate short-cutting heuristics, the use of SPTs allows to achieve higher accuracy with acceptable time and memory overhead. Furthermore, SPTs can be maintained incrementally under edge insertions and deletions, which allows for a fully-dynamic algorithm. The second improvement is a new landmark selection strategy that seeks to maximize the coverage of all shortest paths by the selected landmarks. The improved method is evaluated on the DBLP, Orkut, Twitter and Skype social networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在非常大的图中快速完全动态的基于地标的最短路径距离估计
计算图中一对顶点之间的最短路径是图算法的基本原理。解决这个问题的经典精确方法无法适用于拥有数亿用户和数十亿连接的现代快速发展的社交网络。已经提出了许多近似方法,包括几种基于地标的方法,这些方法已被证明可以以可接受的精度扩展到非常大的图形。本文对现有的基于地标的最短路径估计方法进行了两种改进。第一个改进与最短路径树(spt)的使用有关。结合适当的捷径启发式方法,使用spt可以在可接受的时间和内存开销下实现更高的准确性。此外,在边缘插入和删除的情况下,spt可以增量地保持,这允许全动态算法。第二个改进是一种新的地标选择策略,它寻求最大化所选地标的所有最短路径的覆盖范围。在DBLP、Orkut、Twitter和Skype社交网络上对改进后的方法进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1