Evaluation of an Organically Modified Clinoptilolite (OMC) and a Multi-Component Mycotoxin Detoxifying Agent (MMDA) on Survival, Growth, Feed Utilization and Disease Resistance of Nile Tilapia (Oreochromis niloticus) Fingerlings Fed with Low Aflatoxin
R. Bhujel, Anusha D. Perera, N. Todorović, J. Raj, R. Gonçalves, M. Vasiljevic
{"title":"Evaluation of an Organically Modified Clinoptilolite (OMC) and a Multi-Component Mycotoxin Detoxifying Agent (MMDA) on Survival, Growth, Feed Utilization and Disease Resistance of Nile Tilapia (Oreochromis niloticus) Fingerlings Fed with Low Aflatoxin","authors":"R. Bhujel, Anusha D. Perera, N. Todorović, J. Raj, R. Gonçalves, M. Vasiljevic","doi":"10.3390/aquacj3010007","DOIUrl":null,"url":null,"abstract":"Mycotoxins have become a serious issue in the animal feed industry and have also affected the aquaculture industry. Mycotoxins can create serious health problems in aquatic and terrestrial animals, and their presence in agricultural products may result in significant economic losses. To reduce the impact of mycotoxins on Nile tilapia fry, two commercially available products—Organically Modified Clinoptilolite (OMC) and multi-component mycotoxin detoxifying agent (MMDA)—were used in this study. Six diets as treatments (T1 = Control (C); T2 = Control + OMC 2 g/kg (OMC); T3 = Control + MMDA 2 g/kg (MMDA); T4 = AFB1 0.5 mg/kg (AF); T5 = AFB1 0.5 mg/kg + 2 g/kg OMC (AFOMC); T6 = AFB1 0.5 mg/kg + MMDA 2 g/kg (AFMMDA)) with similar crude protein levels (35.75 ± 0.35%) were formulated and fed to Nile tilapia fry (1.97 ± 0.1 g) for a period of 84 days. These fish were housed in 18 aquaria (100 L) at a density of 50 fish/aquarium. The results from this study showed that MMDA significantly (p < 0.05) improved the survival of fish by 16% as compared to the control group. Nevertheless, growth parameters were not affected among the treatments. These results also indicated that protein intake was significantly higher in the control and OMC diet (T2) compared to aflatoxin B1-fed tilapia. The protein efficiency ratio (PER) was significantly higher in the AFMMDA as compared to the control and MMDA. A 14-day bacterial challenge test with Aeromonas hydrophila demonstrated that diets containing MMDA or OMC improved survival when AFB1 was present in the diet. Therefore, the supplementation of feed with MMDA or OMC is recommended to ameliorate the negative effects of AFB1 in Nile Tilapia feeds.","PeriodicalId":36566,"journal":{"name":"Indonesian Aquaculture Journal","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Aquaculture Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aquacj3010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Mycotoxins have become a serious issue in the animal feed industry and have also affected the aquaculture industry. Mycotoxins can create serious health problems in aquatic and terrestrial animals, and their presence in agricultural products may result in significant economic losses. To reduce the impact of mycotoxins on Nile tilapia fry, two commercially available products—Organically Modified Clinoptilolite (OMC) and multi-component mycotoxin detoxifying agent (MMDA)—were used in this study. Six diets as treatments (T1 = Control (C); T2 = Control + OMC 2 g/kg (OMC); T3 = Control + MMDA 2 g/kg (MMDA); T4 = AFB1 0.5 mg/kg (AF); T5 = AFB1 0.5 mg/kg + 2 g/kg OMC (AFOMC); T6 = AFB1 0.5 mg/kg + MMDA 2 g/kg (AFMMDA)) with similar crude protein levels (35.75 ± 0.35%) were formulated and fed to Nile tilapia fry (1.97 ± 0.1 g) for a period of 84 days. These fish were housed in 18 aquaria (100 L) at a density of 50 fish/aquarium. The results from this study showed that MMDA significantly (p < 0.05) improved the survival of fish by 16% as compared to the control group. Nevertheless, growth parameters were not affected among the treatments. These results also indicated that protein intake was significantly higher in the control and OMC diet (T2) compared to aflatoxin B1-fed tilapia. The protein efficiency ratio (PER) was significantly higher in the AFMMDA as compared to the control and MMDA. A 14-day bacterial challenge test with Aeromonas hydrophila demonstrated that diets containing MMDA or OMC improved survival when AFB1 was present in the diet. Therefore, the supplementation of feed with MMDA or OMC is recommended to ameliorate the negative effects of AFB1 in Nile Tilapia feeds.