Bayesian inference for the Birnbaum–Saunders autoregressive conditional duration model with application to high-frequency financial data

Nascimento Fernando, Leao Jeremias, H. Saulo
{"title":"Bayesian inference for the Birnbaum–Saunders autoregressive conditional duration model with application to high-frequency financial data","authors":"Nascimento Fernando, Leao Jeremias, H. Saulo","doi":"10.1080/23737484.2021.1874571","DOIUrl":null,"url":null,"abstract":"Abstract Autoregressive conditional duration (ACD) models have been preponderant when the subject is the modeling of high-frequency financial data. A prominent model that has demonstrated great adjustment capacity is the ACD model based on the Birnbaum–Saunders distribution (BS-ACD). Recent works have shown that this model outperforms the existing models in the literature. Nevertheless, these works explore only classical estimation approaches. In this article, we perform a Bayesian approach of the BS-ACD model. The scale parameter was modeled considering a dynamic linear model. Estimation of posterior distribution of parameters was approximated through Markov chain Monte Carlo methods. A simulation study is conducted to evaluate the performance of Bayesian estimators and two applications to real high frequency data illustrate the proposed methodology.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"90 3 1","pages":"215 - 228"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2021.1874571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Autoregressive conditional duration (ACD) models have been preponderant when the subject is the modeling of high-frequency financial data. A prominent model that has demonstrated great adjustment capacity is the ACD model based on the Birnbaum–Saunders distribution (BS-ACD). Recent works have shown that this model outperforms the existing models in the literature. Nevertheless, these works explore only classical estimation approaches. In this article, we perform a Bayesian approach of the BS-ACD model. The scale parameter was modeled considering a dynamic linear model. Estimation of posterior distribution of parameters was approximated through Markov chain Monte Carlo methods. A simulation study is conducted to evaluate the performance of Bayesian estimators and two applications to real high frequency data illustrate the proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Birnbaum-Saunders自回归条件期限模型的贝叶斯推断及其在高频金融数据中的应用
自回归条件持续时间(ACD)模型在高频金融数据建模中占有优势。基于Birnbaum-Saunders分布的ACD模型(BS-ACD)是具有较强调节能力的突出模型。最近的研究表明,该模型优于文献中现有的模型。然而,这些工作只探讨了经典的估计方法。在本文中,我们执行了BS-ACD模型的贝叶斯方法。尺度参数采用动态线性模型建模。通过马尔可夫链蒙特卡罗方法逼近了参数后验分布的估计。通过仿真研究评估了贝叶斯估计器的性能,并在实际高频数据中的两个应用验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1