Coarse-to-Fine Grained Classification

Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen
{"title":"Coarse-to-Fine Grained Classification","authors":"Yuqi Huo, Yao Lu, Yulei Niu, Zhiwu Lu, Ji-Rong Wen","doi":"10.1145/3331184.3331336","DOIUrl":null,"url":null,"abstract":"Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fine-grained image classification and retrieval become topical in both computer vision and information retrieval. In real-life scenarios, fine-grained tasks tend to appear along with coarse-grained tasks when the observed object is coming closer. However, in previous works, the combination of fine-grained and coarse-grained tasks was often ignored. In this paper, we define a new problem called coarse-to-fine grained classification (C2FGC) which aims to recognize the classes of objects in multiple resolutions (from low to high). To solve this problem, we propose a novel Multi-linear Pooling with Hierarchy (MLPH) model. Specifically, we first design a multi-linear pooling module to include both trilinear and bilinear pooling, and then formulate the coarse-grained and fine-grained tasks within a unified framework. Experiments on two benchmark datasets show that our model achieves state-of-the-art results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗到细粒度分类
细粒度图像的分类和检索已成为计算机视觉和信息检索领域的研究热点。在现实场景中,当观察到的对象越来越近时,细粒度任务往往会与粗粒度任务一起出现。然而,在以往的工作中,细粒度和粗粒度任务的结合往往被忽略。在本文中,我们定义了一个新的问题,称为粗粒度到细粒度分类(C2FGC),其目的是在多个分辨率(从低到高)下识别对象的类别。为了解决这个问题,我们提出了一种新的多层线性池化(MLPH)模型。具体来说,我们首先设计了一个包含三线性和双线性池化的多线性池化模块,然后在统一的框架内制定粗粒度和细粒度任务。在两个基准数据集上的实验表明,我们的模型达到了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Task Completion Flows from Web APIs Session details: Session 6A: Social Media Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN Adversarial Training for Review-Based Recommendations Hate Speech Detection is Not as Easy as You May Think: A Closer Look at Model Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1