Development of cost-effective wafer level process for 3D-integration with bump-less TSV interconnects

K. Fujimoto, N. Maeda, H. Kitada, Y. Kim, S. Kodama, T. Nakamura, K. Suzuki, T. Ohba
{"title":"Development of cost-effective wafer level process for 3D-integration with bump-less TSV interconnects","authors":"K. Fujimoto, N. Maeda, H. Kitada, Y. Kim, S. Kodama, T. Nakamura, K. Suzuki, T. Ohba","doi":"10.1109/ECTC.2012.6248881","DOIUrl":null,"url":null,"abstract":"The multi-stack processes for wafer-on-wafer (WOW) have been developed. The key features are bumpless interconnects adapted to TSVs and extendibility for chip-on-wafer (COW) taking high throughput into account. In order to realize the multi-stacked wafers with ultra thinned wafer of less than 10μm with an adhesive polymer, several processes have been optimized. The thickness of the wafer after back-grinding was controlled within the total thickness variation (TTV) of 1.2μm on wafer-level of 8 inch. As the dielectric film for the side wall of though silicon vias (TSV), SiN film with low deposition temperature of 150 °C has been developed and applied for TSV process without degradation for electrical characteristics. The uniformity of Cu electro-plating has been improved that the overburdened Cu from the surface was decreased from 13.3 μm to 0.7 μm by optimizing plating solution. The CMP process following Cu electro-plating has been customized for the high rate of 5 μm/min. Finally, the stacked wafer has been evaluated for thermal cycle test (TCT) of 100 cycles with -65 to 150 °C. The result showed that there was no degradation for reliability and packaging process.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":"114 1","pages":"537-540"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6248881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The multi-stack processes for wafer-on-wafer (WOW) have been developed. The key features are bumpless interconnects adapted to TSVs and extendibility for chip-on-wafer (COW) taking high throughput into account. In order to realize the multi-stacked wafers with ultra thinned wafer of less than 10μm with an adhesive polymer, several processes have been optimized. The thickness of the wafer after back-grinding was controlled within the total thickness variation (TTV) of 1.2μm on wafer-level of 8 inch. As the dielectric film for the side wall of though silicon vias (TSV), SiN film with low deposition temperature of 150 °C has been developed and applied for TSV process without degradation for electrical characteristics. The uniformity of Cu electro-plating has been improved that the overburdened Cu from the surface was decreased from 13.3 μm to 0.7 μm by optimizing plating solution. The CMP process following Cu electro-plating has been customized for the high rate of 5 μm/min. Finally, the stacked wafer has been evaluated for thermal cycle test (TCT) of 100 cycles with -65 to 150 °C. The result showed that there was no degradation for reliability and packaging process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发具有成本效益的晶圆级3d集成工艺与无碰撞TSV互连
硅片对硅片(WOW)的多层叠工艺得到了发展。主要特点是适合tsv的无凹凸互连和考虑到高吞吐量的片上(COW)的可扩展性。为了实现小于10μm的超薄晶片与粘接聚合物的多层堆叠,对几种工艺进行了优化。反磨后的晶圆厚度在8英寸晶圆级上控制在总厚度变化(TTV) 1.2μm以内。作为透硅通孔(TSV)侧壁的介质膜,沉积温度低至150℃的SiN薄膜已被开发出来并应用于TSV工艺,且其电特性没有退化。通过对镀液的优化,Cu镀层的均匀性得到了改善,镀层表面的过量Cu从13.3 μm减小到0.7 μm。定制了铜电镀后的CMP工艺,速度可达5 μm/min。最后,对堆叠晶圆进行了-65至150°C的100次热循环测试(TCT)。结果表明,在可靠性和封装过程中没有退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parasitic electrical and electromagnetic effects Heat management Passive electronic components Interconnection technology Reliability and maintainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1