{"title":"Theory for Resonant Ion Acceleration by Nonlinear Magnetosonic Fast and Slow Waves in Finite β Plasmas","authors":"Y. Ohsawa","doi":"10.1063/1.865614","DOIUrl":null,"url":null,"abstract":"A Korteweg–de Vries equation that is applicable to both the nonlinear magnetosonic fast and slow waves is derived from a two‐fluid model with finite ion and electron pressures. As in the cold plasma theory, the fast wave has a critical angle θc. For propagation angles greater than θc (quasiperpendicular propagation), the fast wave has a positive soliton, whereas for angles smaller than θc, it has a negative soliton. Finite β effects decrease the value of θc. The slow wave has a positive soliton for all angles of propagation. The magnitude of resonant ion acceleration (the vp×B acceleration) by the nonlinear fast and slow waves is evaluated. In the fast wave, the electron pressure makes the acceleration stronger for all propagation angles. The decrease in θc resulting from finite β effects results in broadening of the region of strong acceleration. It is also found that fairly strong ion acceleration can occur in the nonlinear slow wave in high β plasmas. The possibility of unlimited acceleration of ion...","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"80 1","pages":"1-39"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.865614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
Abstract
A Korteweg–de Vries equation that is applicable to both the nonlinear magnetosonic fast and slow waves is derived from a two‐fluid model with finite ion and electron pressures. As in the cold plasma theory, the fast wave has a critical angle θc. For propagation angles greater than θc (quasiperpendicular propagation), the fast wave has a positive soliton, whereas for angles smaller than θc, it has a negative soliton. Finite β effects decrease the value of θc. The slow wave has a positive soliton for all angles of propagation. The magnitude of resonant ion acceleration (the vp×B acceleration) by the nonlinear fast and slow waves is evaluated. In the fast wave, the electron pressure makes the acceleration stronger for all propagation angles. The decrease in θc resulting from finite β effects results in broadening of the region of strong acceleration. It is also found that fairly strong ion acceleration can occur in the nonlinear slow wave in high β plasmas. The possibility of unlimited acceleration of ion...