Structural Query Expansion via motifs from Wikipedia

Joan Guisado-Gámez, Arnau Prat-Pérez, J. Larriba-Pey
{"title":"Structural Query Expansion via motifs from Wikipedia","authors":"Joan Guisado-Gámez, Arnau Prat-Pérez, J. Larriba-Pey","doi":"10.1145/3077331.3077342","DOIUrl":null,"url":null,"abstract":"The search for relevant information can be very frustrating for users who, unintentionally, use inappropriate keywords to express their needs. Expansion techniques aim at transforming the users' queries by adding new terms, called expansion features, that better describe the real users' intent. We propose Structural Query Expansion (SQE), a method that relies on relevant structures found in knowledge bases (KBs) to extract the expansion features as opposed to the use of semantics. In the particular case of this paper, we use Wikipedia because it is probably the largest source of up-to-date information. SQE is capable of achieving more than 150% improvement over non-expanded queries and is able to identify the expansion features in less than 0.2 seconds in the worst-case scenario. SQE is designed as an orthogonal method that can be combined with other expansion techniques, such as pseudo-relevance feedback.","PeriodicalId":92430,"journal":{"name":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ExploreDB'17. International Workshop on Exploratory Search in Databases and the Web (4th : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077331.3077342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The search for relevant information can be very frustrating for users who, unintentionally, use inappropriate keywords to express their needs. Expansion techniques aim at transforming the users' queries by adding new terms, called expansion features, that better describe the real users' intent. We propose Structural Query Expansion (SQE), a method that relies on relevant structures found in knowledge bases (KBs) to extract the expansion features as opposed to the use of semantics. In the particular case of this paper, we use Wikipedia because it is probably the largest source of up-to-date information. SQE is capable of achieving more than 150% improvement over non-expanded queries and is able to identify the expansion features in less than 0.2 seconds in the worst-case scenario. SQE is designed as an orthogonal method that can be combined with other expansion techniques, such as pseudo-relevance feedback.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过维基百科的主题进行结构查询扩展
搜索相关信息可能会让用户非常沮丧,因为他们无意中使用了不合适的关键字来表达自己的需求。扩展技术旨在通过添加新的术语(称为扩展特征)来转换用户的查询,这些术语更好地描述了用户的真实意图。我们提出了结构化查询扩展(SQE),这是一种依赖于知识库(KBs)中发现的相关结构来提取扩展特征的方法,而不是使用语义。在本文的特殊情况下,我们使用维基百科,因为它可能是最新信息的最大来源。SQE能够实现比非扩展查询150%以上的改进,并且能够在最坏的情况下在0.2秒内识别扩展特性。SQE被设计为一种正交方法,可以与伪相关反馈等其他扩展技术相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration and Exploration of Connected Personal Digital Traces Enabling Change Exploration: Vision Paper Structural Query Expansion via motifs from Wikipedia Interactive Exploration of Correlated Time Series On Achieving Diversity in Recommender Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1