Investigation of initial stage of hybrid X pinches

I. N. Tilikin, A. S. Dimitriev, A. R. Mingaleev, S. N. Mishin, V. Romanova, A. E. Ter-Oganesyan, T. Shelkovenko, S. Pikuz, C. Hoyt, P. Gourdain, A. Cahill, J. Greenly, D. Hammer
{"title":"Investigation of initial stage of hybrid X pinches","authors":"I. N. Tilikin, A. S. Dimitriev, A. R. Mingaleev, S. N. Mishin, V. Romanova, A. E. Ter-Oganesyan, T. Shelkovenko, S. Pikuz, C. Hoyt, P. Gourdain, A. Cahill, J. Greenly, D. Hammer","doi":"10.1109/PLASMA.2013.6635138","DOIUrl":null,"url":null,"abstract":"Summary form only given. The initial stage a hybrid X pinch (HXP) plasma formation has been studied using laser probing x-ray radiography and electrical measurements. This stage is especially interesting in HXPs in comparison with standard X-pinches because of the strong influence of the electrode plasmas on the process of neck development. Electrode material evaporated by strong UV radiation from the exploding wire can shorten the electrode gap before hot spot formation. The interaction of electrodes plasmas and the exploding wire plasma determines the discharge parameters required for proper HXP operation. The experiments in this work were performed on different pulsers with output current from 4 kA to 1.2 MA and current rise time from 50 ns to 340 ns. The low inductance super small pulse generator Micro based on ceramic capacitors and a flashover vacuum optically triggered switch was specially designed to study the initial phase of the HXP. This pulser with a peak current of 5 kA and current rise rate 100 A/ns reproduced very well the processes in HXPs on more powerful devices in first tenths nanoseconds of the discharge and enables us to study the details of plasma formation without powering big machines. The results obtained on the Micro pulser were compared with the results obtained in experiments on our older pulsers GVP (10 kA, 350 ns) and BIN (250 kA, 100 ns) at the Lebedev Institute, and XP (400 kA, 100 ns) and COBRA (1 MA, 100 ns) at Cornell University. It was shown that in HXPs from materials with low melting temperature and high core expansion rate (Al, Cu, Ag, Au) the wire core expands and fills inter-electrode gap and prevents fast diode shortening by the electrode plasma. That makes possible using relatively long pulse drivers for HXP.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6635138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. The initial stage a hybrid X pinch (HXP) plasma formation has been studied using laser probing x-ray radiography and electrical measurements. This stage is especially interesting in HXPs in comparison with standard X-pinches because of the strong influence of the electrode plasmas on the process of neck development. Electrode material evaporated by strong UV radiation from the exploding wire can shorten the electrode gap before hot spot formation. The interaction of electrodes plasmas and the exploding wire plasma determines the discharge parameters required for proper HXP operation. The experiments in this work were performed on different pulsers with output current from 4 kA to 1.2 MA and current rise time from 50 ns to 340 ns. The low inductance super small pulse generator Micro based on ceramic capacitors and a flashover vacuum optically triggered switch was specially designed to study the initial phase of the HXP. This pulser with a peak current of 5 kA and current rise rate 100 A/ns reproduced very well the processes in HXPs on more powerful devices in first tenths nanoseconds of the discharge and enables us to study the details of plasma formation without powering big machines. The results obtained on the Micro pulser were compared with the results obtained in experiments on our older pulsers GVP (10 kA, 350 ns) and BIN (250 kA, 100 ns) at the Lebedev Institute, and XP (400 kA, 100 ns) and COBRA (1 MA, 100 ns) at Cornell University. It was shown that in HXPs from materials with low melting temperature and high core expansion rate (Al, Cu, Ag, Au) the wire core expands and fills inter-electrode gap and prevents fast diode shortening by the electrode plasma. That makes possible using relatively long pulse drivers for HXP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杂交种初穗期的研究
只提供摘要形式。利用激光探测X射线摄影和电测量技术研究了混合X捏缩(HXP)等离子体形成的初始阶段。由于电极等离子体对颈部发育过程的强烈影响,与标准x -夹钳相比,hxp的这一阶段特别有趣。由爆炸导线产生的强紫外辐射蒸发的电极材料可以在热点形成之前缩短电极间隙。电极等离子体和爆炸导线等离子体的相互作用决定了适当的HXP操作所需的放电参数。实验在不同的脉冲上进行,输出电流从4 kA到1.2 MA,电流上升时间从50 ns到340 ns。基于陶瓷电容器和闪络真空光触发开关的低电感超小型脉冲发生器Micro,专门用于研究HXP的初始相位。该脉冲发生器的峰值电流为5 kA,电流上升速率为100 a /ns,在放电的前十分之一纳秒内就能在更强大的设备上很好地再现hxp中的过程,使我们能够在不为大型机器供电的情况下研究等离子体形成的细节。并与列别捷夫研究所的GVP (10 kA, 350 ns)和BIN (250 kA, 100 ns)以及康奈尔大学的XP (400 kA, 100 ns)和COBRA (1 MA, 100 ns)上的实验结果进行了比较。结果表明,在熔点低、芯膨胀率高的材料(Al、Cu、Ag、Au)中,芯膨胀填充电极间隙,阻止了电极等离子体对二极管的快速缩短。这使得在HXP中使用相对较长的脉冲驱动成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Progress of 140 GHz gyro-amplifier using confocal waveguide Recent development on the modeling of electrical contact Solution comparisons of models of an expanding ambipolar plasma High current, high temperature capacitors: Recent developments and future prospects Acceleration and transport of a focused laser-generated proton beams for fast-ignition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1