Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression

Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, Nova Agustina
{"title":"Deteksi Dini Penyakit Diabetes Menggunakan Machine Learning dengan Algoritma Logistic Regression","authors":"Erlin, Yulvia Nora Marlim, Junadhi, Laili Suryati, Nova Agustina","doi":"10.22146/jnteti.v11i2.3586","DOIUrl":null,"url":null,"abstract":"Diabetes menjadi salah satu penyakit yang mematikan di dunia, termasuk di Indonesia. Diabetes dapat menyebabkan komplikasi di banyak bagian tubuh dan secara keseluruhan dapat meningkatkan risiko kematian. Salah satu cara untuk mendeteksi penyakit diabetes adalah dengan memanfaatkan algoritma machine learning. Logistic regression merupakan model klasifikasi dalam machine learning yang banyak digunakan dalam analisis klinis. Pada makalah ini, dirancang model prediksi menggunakan logistic regression pada Python IDE untuk deteksi dini dengan memberikan prediksi seseorang terindikasi penyakit diabetes atau tidak berdasarkan data awal yang diberikan. Eksperimen dilakukan menggunakan dataset dari Pima Indians Diabetes Database yang terdiri atas 768 data pasien dengan delapan variabel independen dan satu variabel dependen. Exploratory data analysis dilakukan untuk mendapatkan wawasan maksimal dari dataset yang dimiliki menggunakan bantuan statistik dan mempresentasikannya melalui teknik visual. Beberapa variabel dataset memuat data yang tidak lengkap. Nilai data yang hilang digantikan dengan nilai median dari setiap variabel. Penanganan terhadap data yang tidak seimbang dilakukan menggunakan synthetic minority over-sampling technique (SMOTE) untuk meningkatkan kelas minoritas melalui sampel data sintesis. Model dievaluasi berdasarkan confusion matrix yang memperlihatkan kinerja yang cukup baik dengan nilai akurasi sebesar 77%, presisi 75%, recall 77% dan F1-score 76%. Selain itu, pada makalah ini juga digunakan teknik grid search sebagai hyperparameter tuning yang dapat meningkatkan kinerja dari model logistic regression. Kinerja model dasar dengan model sesudah dilakukan penerapan teknik grid search diuji dan dievaluasi. Hasil percobaan memperlihatkan bahwa model berbasis hyperparameter tuning mampu meningkatkan kinerja algoritma logistic regression untuk prediksi dengan nilai akurasi sebesar 82%, presisi 81%, recall 79%, dan F1-score 80%.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v11i2.3586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diabetes menjadi salah satu penyakit yang mematikan di dunia, termasuk di Indonesia. Diabetes dapat menyebabkan komplikasi di banyak bagian tubuh dan secara keseluruhan dapat meningkatkan risiko kematian. Salah satu cara untuk mendeteksi penyakit diabetes adalah dengan memanfaatkan algoritma machine learning. Logistic regression merupakan model klasifikasi dalam machine learning yang banyak digunakan dalam analisis klinis. Pada makalah ini, dirancang model prediksi menggunakan logistic regression pada Python IDE untuk deteksi dini dengan memberikan prediksi seseorang terindikasi penyakit diabetes atau tidak berdasarkan data awal yang diberikan. Eksperimen dilakukan menggunakan dataset dari Pima Indians Diabetes Database yang terdiri atas 768 data pasien dengan delapan variabel independen dan satu variabel dependen. Exploratory data analysis dilakukan untuk mendapatkan wawasan maksimal dari dataset yang dimiliki menggunakan bantuan statistik dan mempresentasikannya melalui teknik visual. Beberapa variabel dataset memuat data yang tidak lengkap. Nilai data yang hilang digantikan dengan nilai median dari setiap variabel. Penanganan terhadap data yang tidak seimbang dilakukan menggunakan synthetic minority over-sampling technique (SMOTE) untuk meningkatkan kelas minoritas melalui sampel data sintesis. Model dievaluasi berdasarkan confusion matrix yang memperlihatkan kinerja yang cukup baik dengan nilai akurasi sebesar 77%, presisi 75%, recall 77% dan F1-score 76%. Selain itu, pada makalah ini juga digunakan teknik grid search sebagai hyperparameter tuning yang dapat meningkatkan kinerja dari model logistic regression. Kinerja model dasar dengan model sesudah dilakukan penerapan teknik grid search diuji dan dievaluasi. Hasil percobaan memperlihatkan bahwa model berbasis hyperparameter tuning mampu meningkatkan kinerja algoritma logistic regression untuk prediksi dengan nilai akurasi sebesar 82%, presisi 81%, recall 79%, dan F1-score 80%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
糖尿病成为世界上最致命的疾病之一,包括印度尼西亚。糖尿病会在身体的许多部位引起并发症,总的来说会增加死亡的风险。发现糖尿病的一种方法是利用机器学习算法。回归逻辑是学习机器的分类模型,在临床分析中被广泛使用。在这篇论文中,设计了一个预测模型,使用Python思想的逻辑回归来早期检测,通过根据提供的初步数据,给出一个人对糖尿病症状的预测。该实验使用的是糖尿病病患者数据库中768个患者的数据集,其中有8个独立变量和一个依赖变量。探索数据分析是为了利用统计帮助和通过视觉技术来获得现有数据集的最大视角。一些数据变量包含不完整的数据。每个变量的中位数代替了丢失的数据值。使用合成微分技术(SMOTE)处理不平衡数据的问题,通过合成数据样本提升少数类别。模型是根据矩阵孔子进行评估的,基准为77%,精度为75%,精度为75%,回报率为77%和F1-score为76%。此外,本文还将网格搜索技术用作调谐超参数,可以提高回归逻辑模型的性能。测试并评估网格搜索技术的应用后,模型的基本性能。实验结果表明,基于超参数的调整模型能够提高82%的准确率、81%的精度、79%的召回和F1-score 80%的预测逻辑回归算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊最新文献
Citra Tekstur Terbaik Untuk Gaussian Naïve Bayes Dengan Interpolasi Nearest Neighbor Research and Analysis of IndoBERT Hyperparameter Tuning in Fake News Detection Implementation of QR Code Attendance Security System Using RSA and Hash Algorithms Fog Computing-Based System for Decentralized Smart Parking System by Using Firebase Pemantauan dan Pengendalian Parameter Greenhouse Berbasis IoT Dengan Protokol MQTT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1