B. Lebreton, J. Beseres Pollack, Brittany N. Blomberg, T. Palmer, P. Montagna
{"title":"Oyster growth across a salinity gradient in a shallow, subtropical Gulf of Mexico estuary","authors":"B. Lebreton, J. Beseres Pollack, Brittany N. Blomberg, T. Palmer, P. Montagna","doi":"10.1017/exp.2020.72","DOIUrl":null,"url":null,"abstract":"Abstract An increase in oyster aquaculture as a sustainable method of shellfish production is one response to overharvest and degradation of natural oyster reefs over the past century. Successful aquaculture production requires determining the environmental conditions optimal for oyster growth. In this study, the salinity, temperature, chlorophyll a concentration and the growth of Crassostrea virginica were monitored at four locations within the Mission-Aransas Estuary, Texas (USA), a shallow subtropical estuary influenced by relatively low freshwater inflow. Mean growth of the oyster shell (0.205 mm d–1 and 0.203 g d–1) and soft tissues (3.447 mg d–1) was highest when salinity was low (mean = 15.5) and chlorophyll a concentration was high (8.4 μg l–1). Oyster growth also varied temporally with periods of spawning. In low-inflow estuaries such as the Mission-Aransas Estuary, oyster farms should be sited close to river mouths so that oysters can benefit from freshwater inflows and lower salinities.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2020.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract An increase in oyster aquaculture as a sustainable method of shellfish production is one response to overharvest and degradation of natural oyster reefs over the past century. Successful aquaculture production requires determining the environmental conditions optimal for oyster growth. In this study, the salinity, temperature, chlorophyll a concentration and the growth of Crassostrea virginica were monitored at four locations within the Mission-Aransas Estuary, Texas (USA), a shallow subtropical estuary influenced by relatively low freshwater inflow. Mean growth of the oyster shell (0.205 mm d–1 and 0.203 g d–1) and soft tissues (3.447 mg d–1) was highest when salinity was low (mean = 15.5) and chlorophyll a concentration was high (8.4 μg l–1). Oyster growth also varied temporally with periods of spawning. In low-inflow estuaries such as the Mission-Aransas Estuary, oyster farms should be sited close to river mouths so that oysters can benefit from freshwater inflows and lower salinities.