Depth refinement on sparse-depth images using visual perception cues

Muhammad Umar Karim Khan, Asim Khan, C. Kyung
{"title":"Depth refinement on sparse-depth images using visual perception cues","authors":"Muhammad Umar Karim Khan, Asim Khan, C. Kyung","doi":"10.1109/APCCAS.2016.7803997","DOIUrl":null,"url":null,"abstract":"Numerous depth extraction schemes cannot extract depth on textureless regions, thus generating sparse depth maps. In this paper, we propose using perception cues to improve the sparse depth map. We consider the local neighborhood as well the global surface properties of objects. We use this information to complement depth extraction schemes. The method is not scene or class specific. With quantitative evaluation, the proposed method is shown to perform better compared to previous depth refinement methods. The error in terms of standard deviation of depth has been reduced down by 60%. The computational overhead of the proposed method is also very low, making it a suitable candidate for depth refinement.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous depth extraction schemes cannot extract depth on textureless regions, thus generating sparse depth maps. In this paper, we propose using perception cues to improve the sparse depth map. We consider the local neighborhood as well the global surface properties of objects. We use this information to complement depth extraction schemes. The method is not scene or class specific. With quantitative evaluation, the proposed method is shown to perform better compared to previous depth refinement methods. The error in terms of standard deviation of depth has been reduced down by 60%. The computational overhead of the proposed method is also very low, making it a suitable candidate for depth refinement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用视觉感知线索对稀疏深度图像进行深度细化
许多深度提取方案无法在无纹理区域上提取深度,从而产生稀疏的深度图。在本文中,我们提出使用感知线索来改进稀疏深度图。我们考虑了物体的局部邻域和全局表面性质。我们使用这些信息来补充深度提取方案。该方法不是特定于场景或类的。定量评价表明,该方法比以往的深度细化方法具有更好的性能。深度标准偏差的误差降低了60%。所提出的方法的计算开销也非常低,使其成为深度细化的合适候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT and Blockchain: Technologies, Challenges, and Applications Teaching Practice Platform and Innovation Course Construction for Postgraduate Majoring in Electronics Information FPGA implementation of edge detection for Sobel operator in eight directions Analog integrated audio frequency synthesizer Analysis of non-ideal effects and electrochemical impedance spectroscopy of arrayed flexible NiO-based pH sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1