PZT and PVDF piezoelectric transducers’ design implications on their efficiency and energy harvesting potential

Q2 Engineering Energy Harvesting and Systems Pub Date : 2022-09-21 DOI:10.1515/ehs-2022-0087
Antiopi-Malvina Stamatellou
{"title":"PZT and PVDF piezoelectric transducers’ design implications on their efficiency and energy harvesting potential","authors":"Antiopi-Malvina Stamatellou","doi":"10.1515/ehs-2022-0087","DOIUrl":null,"url":null,"abstract":"Abstract Despite the intensive research carried out in the last two decades, the actual performance of piezoelectric energy harvesters needs significant improvement for widespread applicability. Custom designed experimental set-ups and methods can be applied for the evaluation of new piezoelectric energy harvesters or modified design versions of existing transducers, in terms of efficiency and specific power. In this context, two representative types of commercial cantilever piezoelectric transducers, made of PZT and PVDF material respectively, were tested in various combinations of aerodynamic and harmonic base excitation. A line type laser was used along with long exposure photography for the visualisation of the piezofilm’s mode shapes, tip deflection and the digitization of the elastic line at the oscillation extrema. The harvested power was measured at on-resonance conditions and studied relative to the excitation combinations and the mode shapes. Energy conversion efficiency, defined as the ratio of the electric-field energy accumulated by the supercapacitors, over the total elastic strain energy change of the material during the oscillations is measured and compared. Design improvements are proposed for both transducer types to extract and absorb higher amounts of energy and improve their bandwidth to match the available excitation source characteristics.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Harvesting and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ehs-2022-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Despite the intensive research carried out in the last two decades, the actual performance of piezoelectric energy harvesters needs significant improvement for widespread applicability. Custom designed experimental set-ups and methods can be applied for the evaluation of new piezoelectric energy harvesters or modified design versions of existing transducers, in terms of efficiency and specific power. In this context, two representative types of commercial cantilever piezoelectric transducers, made of PZT and PVDF material respectively, were tested in various combinations of aerodynamic and harmonic base excitation. A line type laser was used along with long exposure photography for the visualisation of the piezofilm’s mode shapes, tip deflection and the digitization of the elastic line at the oscillation extrema. The harvested power was measured at on-resonance conditions and studied relative to the excitation combinations and the mode shapes. Energy conversion efficiency, defined as the ratio of the electric-field energy accumulated by the supercapacitors, over the total elastic strain energy change of the material during the oscillations is measured and compared. Design improvements are proposed for both transducer types to extract and absorb higher amounts of energy and improve their bandwidth to match the available excitation source characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PZT和PVDF压电换能器的设计对其效率和能量收集潜力的影响
摘要:尽管近二十年来进行了大量的研究,但压电能量采集器的实际性能仍有待提高,才能广泛应用。定制设计的实验装置和方法可以用于评估新的压电能量收集器或现有换能器的改进设计版本,在效率和比功率方面。在此背景下,分别由PZT和PVDF材料制成的两种具有代表性的商用悬臂式压电换能器在各种气动和谐波基激励组合下进行了测试。线型激光器与长曝光摄影一起使用,用于可视化压电薄膜的模态形状,尖端偏转和振荡极值处弹性线的数字化。在非共振条件下测量了收获的功率,并研究了与激励组合和模态振型的关系。测量并比较了能量转换效率,即超级电容器积累的电场能量与振荡过程中材料的总弹性应变能变化之比。提出了两种换能器类型的设计改进,以提取和吸收更多的能量,并提高其带宽以匹配可用的激发源特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Harvesting and Systems
Energy Harvesting and Systems Energy-Energy Engineering and Power Technology
CiteScore
2.00
自引率
0.00%
发文量
31
期刊最新文献
Solar energy harvesting-based built-in backpack charger A comprehensive approach of evolving electric vehicles (EVs) to attribute “green self-generation” – a review Investigation of KAPTON–PDMS triboelectric nanogenerator considering the edge-effect capacitor An IoT-based intelligent smart energy monitoring system for solar PV power generation Improving power plant technology to increase energy efficiency of autonomous consumers using geothermal sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1