Kyrillos K. Selim, Saeid Khalid, Dina El-nawam, Mohamed Abdel Fattah, Demyana A. Saleeb
Abstract Developing renewable energy sources has gained considerable attention recently. Solar energy is the fastest-growing alternative renewable energy source. A solar energy harvesting-based built-in backpack charger is introduced here. The proposed system aims to utilise the surrounding solar energy and overcome the power limitations of batteries installed in mobile phones in cases where power sockets are unavailable. A 6 cm × 6 cm solar module is employed. Additionally, current, voltage, and power were measured under the two scenarios; the first scenario is when the electrical load is 100 Ω, and the second scenario is when the load is a power bank. The maximum harvested power noticed in the first scenario of the resistive load was 140 mW by the proposed system in the southeast direction from 10:30 a.m. to 4:30 p.m. Moreover, the top-generated output voltage and current in this scenario were 3.6 V and 36 mA. On the other hand, 55 mW was the top value for the second scenario of the power bank as a load in the flat direction with the highest generated output voltage and current of 4.1 V and 13 mA, whereas 4.27 V was the highest generated voltage in this scenario in the west direction.
{"title":"Solar energy harvesting-based built-in backpack charger","authors":"Kyrillos K. Selim, Saeid Khalid, Dina El-nawam, Mohamed Abdel Fattah, Demyana A. Saleeb","doi":"10.1515/ehs-2023-0114","DOIUrl":"https://doi.org/10.1515/ehs-2023-0114","url":null,"abstract":"Abstract Developing renewable energy sources has gained considerable attention recently. Solar energy is the fastest-growing alternative renewable energy source. A solar energy harvesting-based built-in backpack charger is introduced here. The proposed system aims to utilise the surrounding solar energy and overcome the power limitations of batteries installed in mobile phones in cases where power sockets are unavailable. A 6 cm × 6 cm solar module is employed. Additionally, current, voltage, and power were measured under the two scenarios; the first scenario is when the electrical load is 100 Ω, and the second scenario is when the load is a power bank. The maximum harvested power noticed in the first scenario of the resistive load was 140 mW by the proposed system in the southeast direction from 10:30 a.m. to 4:30 p.m. Moreover, the top-generated output voltage and current in this scenario were 3.6 V and 36 mA. On the other hand, 55 mW was the top value for the second scenario of the power bank as a load in the flat direction with the highest generated output voltage and current of 4.1 V and 13 mA, whereas 4.27 V was the highest generated voltage in this scenario in the west direction.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"33 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139004673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The population growing faster than before, and availability of transportation options is increasing. Automobiles require combustion engines, which require fuel obtained from underground storage. This underground fuel storage is limited and depleting day-by-day. Many nations have set deadlines up to 2040 to stop producing automobiles that run on underground fuels. Researchers have concentrated on alternative modes of fuel for transportation. The world’s largest Sedan marketplaces will transition to all-electric vehicles by 2035, providing a glimpse of greener future other than a significant financial prospect. Not only Sedan, the entire world is focussing on only green electric vehicles to maintain sustainability. However, electric vehicle charging stations are operated by using many conventional resources. Therefore, this paper aims to show how self-charging electric vehicles can help to reduce emissions caused by the direct use of conventional resources in charging stations along with the up-to-date status quo of the EV market. The key descriptions of electric vehicles on top of the battery’s type which is randomly used in EVs, how the batteries are proficient in preserving and supplying power continuity itself in vehicles are talked about. Finally, the paper is consulting about charging-discharging system of electric vehicles to make the environment cleaner.
{"title":"A comprehensive approach of evolving electric vehicles (EVs) to attribute “green self-generation” – a review","authors":"Debalina De, Uttara Das, Champa Nandi","doi":"10.1515/ehs-2023-0023","DOIUrl":"https://doi.org/10.1515/ehs-2023-0023","url":null,"abstract":"Abstract The population growing faster than before, and availability of transportation options is increasing. Automobiles require combustion engines, which require fuel obtained from underground storage. This underground fuel storage is limited and depleting day-by-day. Many nations have set deadlines up to 2040 to stop producing automobiles that run on underground fuels. Researchers have concentrated on alternative modes of fuel for transportation. The world’s largest Sedan marketplaces will transition to all-electric vehicles by 2035, providing a glimpse of greener future other than a significant financial prospect. Not only Sedan, the entire world is focussing on only green electric vehicles to maintain sustainability. However, electric vehicle charging stations are operated by using many conventional resources. Therefore, this paper aims to show how self-charging electric vehicles can help to reduce emissions caused by the direct use of conventional resources in charging stations along with the up-to-date status quo of the EV market. The key descriptions of electric vehicles on top of the battery’s type which is randomly used in EVs, how the batteries are proficient in preserving and supplying power continuity itself in vehicles are talked about. Finally, the paper is consulting about charging-discharging system of electric vehicles to make the environment cleaner.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"46 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139012159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Harvesting the dissipated environmental mechanical energy to generate electrical energy is subject of the new research in the field of clean energy. In this paper, a triboelectric nanogenerator based on vertical two-electrode structure was fabricated using KAPTON and PDMS polymers. The nanogenerator outputs were measured and plotted by applying a mechanical vibration with the frequency of 8 Hz. The results indicated the ability of producing a voltage of 3.5 V and a current of 0.025 μA by this nanogenerator. To effectively simulate the performance of the device in different structural and environmental conditions, the ordinary capacitance model of the device was modified considering three effective capacitances. The simulation results showed a very good agreement between calculated and actual outputs when the edge effect capacitor was included in the ordinary model. Finally, based on the corrected model for the nanogenerator, the effect of the environmental conditions on the device output was studied. The innovative point of this text is the investigation of the effect of edge capacitors in the performance of triboelectric nanogenerators, and it has also been tried to collect a collection of studies that I have done in the field of triboelectric nanogenerators.
{"title":"Investigation of KAPTON–PDMS triboelectric nanogenerator considering the edge-effect capacitor","authors":"Mohsen Keykha, Ali Mohammadi","doi":"10.1515/ehs-2023-0030","DOIUrl":"https://doi.org/10.1515/ehs-2023-0030","url":null,"abstract":"Abstract Harvesting the dissipated environmental mechanical energy to generate electrical energy is subject of the new research in the field of clean energy. In this paper, a triboelectric nanogenerator based on vertical two-electrode structure was fabricated using KAPTON and PDMS polymers. The nanogenerator outputs were measured and plotted by applying a mechanical vibration with the frequency of 8 Hz. The results indicated the ability of producing a voltage of 3.5 V and a current of 0.025 μA by this nanogenerator. To effectively simulate the performance of the device in different structural and environmental conditions, the ordinary capacitance model of the device was modified considering three effective capacitances. The simulation results showed a very good agreement between calculated and actual outputs when the edge effect capacitor was included in the ordinary model. Finally, based on the corrected model for the nanogenerator, the effect of the environmental conditions on the device output was studied. The innovative point of this text is the investigation of the effect of edge capacitors in the performance of triboelectric nanogenerators, and it has also been tried to collect a collection of studies that I have done in the field of triboelectric nanogenerators.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Challa Krishna Rao, Sarat Kumar Sahoo, Franco Fernando Yanine
Abstract As the world’s attention turns to cleaner, more dependable, and sustainable resources, the renewable energy sector is rising quickly. The decline in world energy use and climate change are the two most significant factors nowadays. PV forecasting was essential to enhancing the efficiency of the real-time control system and preventing any undesirable effects. The smart energy management systems of distributed energy resources, the forecasting model of irradiation received from the sun, and therefore PV energy production might mitigate the impact of uncertainty on PV energy generation, improve system dependability, and increase the incursion level of solar power generation. Smart sensors and Internet of Things technologies are essential for monitoring and controlling applications in a broad range of fields. As a result, solar power generation forecasting was essential for microgrid stability and security, as well as solar photovoltaic integration in a strategic approach. This paper examines how to use IoT, a solar photovoltaic system being monitored, and shows the proposed monitoring system is a potentially viable option for smart remote and in-person monitoring of a solar PV system.
{"title":"An IoT-based intelligent smart energy monitoring system for solar PV power generation","authors":"Challa Krishna Rao, Sarat Kumar Sahoo, Franco Fernando Yanine","doi":"10.1515/ehs-2023-0015","DOIUrl":"https://doi.org/10.1515/ehs-2023-0015","url":null,"abstract":"Abstract As the world’s attention turns to cleaner, more dependable, and sustainable resources, the renewable energy sector is rising quickly. The decline in world energy use and climate change are the two most significant factors nowadays. PV forecasting was essential to enhancing the efficiency of the real-time control system and preventing any undesirable effects. The smart energy management systems of distributed energy resources, the forecasting model of irradiation received from the sun, and therefore PV energy production might mitigate the impact of uncertainty on PV energy generation, improve system dependability, and increase the incursion level of solar power generation. Smart sensors and Internet of Things technologies are essential for monitoring and controlling applications in a broad range of fields. As a result, solar power generation forecasting was essential for microgrid stability and security, as well as solar photovoltaic integration in a strategic approach. This paper examines how to use IoT, a solar photovoltaic system being monitored, and shows the proposed monitoring system is a potentially viable option for smart remote and in-person monitoring of a solar PV system.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"67 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135975610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The significance of this study is underscored by the immense potential of binary power plants in the contemporary world. These plants have a pivotal role to play in supplying heat to homes, facilitating greenhouse heating, and supporting air conditioning systems. The purpose of the study is to provide recommendations on eliminating errors in the processes of improving and implementing geothermal plants and analysing their functioning during electricity generation. The analytical method, classification, functional, statistical, synthesis, and others should be noted among the methods used. The features of geothermal plants in Kazakhstan were noted, their differences were analysed, and errors that are made during the operation of power plants to increase the energy efficiency of consumers and the causes of errors were analysed. Uncertainties in the development and their impact on the functioning of geothermal power plants were identified. The practical value lies in the application of the identified results, solving errors in the development and implementation of a binary power plant to improve the energy efficiency of consumers, the reliability of the use of geothermal plants in the region, considering various factors, which will help provide recommendations for the appropriate use of the mechanism.
{"title":"Improving power plant technology to increase energy efficiency of autonomous consumers using geothermal sources","authors":"Seitzhan Orynbayev, Amanzhol Tokmoldayev, Nazym Abdlakhatova, Aizhan Zhanpeisova, Issakul Tumanov","doi":"10.1515/ehs-2023-0082","DOIUrl":"https://doi.org/10.1515/ehs-2023-0082","url":null,"abstract":"Abstract The significance of this study is underscored by the immense potential of binary power plants in the contemporary world. These plants have a pivotal role to play in supplying heat to homes, facilitating greenhouse heating, and supporting air conditioning systems. The purpose of the study is to provide recommendations on eliminating errors in the processes of improving and implementing geothermal plants and analysing their functioning during electricity generation. The analytical method, classification, functional, statistical, synthesis, and others should be noted among the methods used. The features of geothermal plants in Kazakhstan were noted, their differences were analysed, and errors that are made during the operation of power plants to increase the energy efficiency of consumers and the causes of errors were analysed. Uncertainties in the development and their impact on the functioning of geothermal power plants were identified. The practical value lies in the application of the identified results, solving errors in the development and implementation of a binary power plant to improve the energy efficiency of consumers, the reliability of the use of geothermal plants in the region, considering various factors, which will help provide recommendations for the appropriate use of the mechanism.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"71 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136132892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Hayder M. Salman, Ali Khudhair Al-Jiboory
Abstract This comprehensive review delves into the burgeoning field of green hydrogen production through the utilization of renewable resources. As the global demand for clean and sustainable energy escalates, green hydrogen has emerged as a promising solution, garnering significant attention due to its potential to decarbonize various sectors. The study encapsulates a thorough exploration of the key methodologies employed in harnessing renewable sources such as wind, solar, and hydroelectric power for hydrogen generation. The analysis encompasses both technological aspects and environmental implications, shedding light on efficiency, scalability, and feasibility. Moreover, the review evaluates the economic viability and policy frameworks that underpin the integration of green hydrogen into existing energy systems. By synthesizing findings from a multitude of research endeavors, this study underscores the current advancements, challenges, and future prospects in the realm of green hydrogen production. Ultimately, this review not only contributes to a deeper understanding of sustainable energy pathways but also provides insights that can guide the evolution of green hydrogen technologies toward a more environmentally conscious and energy-abundant future.
{"title":"A review of green hydrogen production by renewable resources","authors":"Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Hayder M. Salman, Ali Khudhair Al-Jiboory","doi":"10.1515/ehs-2022-0127","DOIUrl":"https://doi.org/10.1515/ehs-2022-0127","url":null,"abstract":"Abstract This comprehensive review delves into the burgeoning field of green hydrogen production through the utilization of renewable resources. As the global demand for clean and sustainable energy escalates, green hydrogen has emerged as a promising solution, garnering significant attention due to its potential to decarbonize various sectors. The study encapsulates a thorough exploration of the key methodologies employed in harnessing renewable sources such as wind, solar, and hydroelectric power for hydrogen generation. The analysis encompasses both technological aspects and environmental implications, shedding light on efficiency, scalability, and feasibility. Moreover, the review evaluates the economic viability and policy frameworks that underpin the integration of green hydrogen into existing energy systems. By synthesizing findings from a multitude of research endeavors, this study underscores the current advancements, challenges, and future prospects in the realm of green hydrogen production. Ultimately, this review not only contributes to a deeper understanding of sustainable energy pathways but also provides insights that can guide the evolution of green hydrogen technologies toward a more environmentally conscious and energy-abundant future.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136183286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naga Sarada Somanchi, Ravi Gugulothu, S. V. Tejeswar
Abstract Heat exchanger (HE) is an instrument that facilitates the operation of HE between two fluids that are at various temperatures. Double-pipe HEs are used in many organizations because of their low installation, design, maintenance costs, flexibility, and their suitability for high pressure applications. Heat transfer (HT) augmentation techniques (passive, active or compound techniques) are used in heat exchangers to reduce the HT surface area, to increase HT capacity and to reduce pumping power. Passive augmentation techniques are much cheaper and do not involve any external power input. They aim to improve the effective surface area, the residence time of the HT fluid and its thermal conductivity by the usage of nanofluids. Nanofluids are used for cooling applications in organizations, transportation, nuclear reactors, electrical and electronic devices and for biomedical applications. Hybrid nanofluids have higher thermal conductivity, low PD and frictional losses and pumping power as compared to the mono nanofluids. In this present work, experiments are conducted in a double pipe HE using TiO 2 , and SiC-water nanofluids by varying the volume concentration and cold fluid mass flow rate ranging from 17.5 to 34.5 lpm by making constant hot fluid mass flow rate. Further, experiments are conducted using TiO 2 –SiC/water hybrid nanofluids. Influence of nano and hybrid nanofluids on the overall HTC and friction factor are experimentally investigated. From the experiments, TiO 2 –SiC/water hybrid nanofluid with nanoparticle ratio TiO 2 :SiC = 1:2 is found to be optimum as the heat transfer enhancement is more with less improvement in friction factor. The overall heat transfer, and friction factor enhancement is 22.92 %, and 11.20 % higher respectively when compared with base fluid for TiO 2 :SiC = 1:2.
{"title":"Experimental investigations on heat transfer enhancement in a double pipe heat exchanger using hybrid nanofluids","authors":"Naga Sarada Somanchi, Ravi Gugulothu, S. V. Tejeswar","doi":"10.1515/ehs-2023-0065","DOIUrl":"https://doi.org/10.1515/ehs-2023-0065","url":null,"abstract":"Abstract Heat exchanger (HE) is an instrument that facilitates the operation of HE between two fluids that are at various temperatures. Double-pipe HEs are used in many organizations because of their low installation, design, maintenance costs, flexibility, and their suitability for high pressure applications. Heat transfer (HT) augmentation techniques (passive, active or compound techniques) are used in heat exchangers to reduce the HT surface area, to increase HT capacity and to reduce pumping power. Passive augmentation techniques are much cheaper and do not involve any external power input. They aim to improve the effective surface area, the residence time of the HT fluid and its thermal conductivity by the usage of nanofluids. Nanofluids are used for cooling applications in organizations, transportation, nuclear reactors, electrical and electronic devices and for biomedical applications. Hybrid nanofluids have higher thermal conductivity, low PD and frictional losses and pumping power as compared to the mono nanofluids. In this present work, experiments are conducted in a double pipe HE using TiO 2 , and SiC-water nanofluids by varying the volume concentration and cold fluid mass flow rate ranging from 17.5 to 34.5 lpm by making constant hot fluid mass flow rate. Further, experiments are conducted using TiO 2 –SiC/water hybrid nanofluids. Influence of nano and hybrid nanofluids on the overall HTC and friction factor are experimentally investigated. From the experiments, TiO 2 –SiC/water hybrid nanofluid with nanoparticle ratio TiO 2 :SiC = 1:2 is found to be optimum as the heat transfer enhancement is more with less improvement in friction factor. The overall heat transfer, and friction factor enhancement is 22.92 %, and 11.20 % higher respectively when compared with base fluid for TiO 2 :SiC = 1:2.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"298 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135303101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oumaima Ait Omar, Hassan EL Fadil, Nour Eddine El Fezazi, Zakaria Oumimoun, Ahmed Ait Errouhi, Oumaima Choukai
Abstract Since the PVSYST simulator is the most well-known software among researchers and PV experts, we chose to compare its results to those of the manual method. Thus, the objective of the article was to obtain the degree of similarity between the results of the PVSYST simulation and the manual calculation of the same parameters, based on the study of the photovoltaic systems of the University Ibn Tofail. Those installations are installed in the Faculty of Letters, Science, the Presidency and CFC. The later used in our study, have different parameters. Hence, to collect these parameters and their distinct data we used multiple sources. The datasheets of each components of the PV system contains the parameters that distinguish the devices therefore it was mandatory to look for that information, since it will facilitate our study. The meteorological database PVGIS, was our reference for the temperature and irradiation data. What’s more is the PVSYST software that helps in the simulation of the PV system and thus having a detailed report with massive information. All this collection of data was aiming to help us comparing the results of yields and other parameters by manual calculation versus simulation in PVSYST. Morocco has demonstrated a strong commitment to combat climate change by embracing renewable energy, particularly photovoltaic systems. In this pursuit, universities like Ibn Tofail University (UIT) play a crucial role in addressing climate challenges and developing research solutions for mitigation. UIT actively participates in projects related to environmental protection and sustainable development, contributing to Morocco’s growth and higher education advancement. As part of its efforts, UIT has been involved in implementing sustainable green projects and promoting renewable energy technologies. A specific study at UIT aimed to compare PVSYST simulation results with manual calculations for four PV systems on campus, considering parameters such as orientation, electrical installation, and panel types. The International Energy Agency (IEA) Photovoltaic Systems Program has established standards and a key concept, the yield factor, measuring the net energy production over a facility’s lifetime compared to the energy used for construction, operation, and supply. By evaluating the accuracy and efficiency of PVSYST, researchers sought to advance the use of PV systems and contribute to Morocco’s renewable energy goals. Such research not only aids in the progression of renewable energy technology but also aligns with Morocco’s vision for sustainable development and environmental protection.
{"title":"Real yields and PVSYST simulations: comparative analysis based on four photovoltaic installations at Ibn Tofail University","authors":"Oumaima Ait Omar, Hassan EL Fadil, Nour Eddine El Fezazi, Zakaria Oumimoun, Ahmed Ait Errouhi, Oumaima Choukai","doi":"10.1515/ehs-2023-0064","DOIUrl":"https://doi.org/10.1515/ehs-2023-0064","url":null,"abstract":"Abstract Since the PVSYST simulator is the most well-known software among researchers and PV experts, we chose to compare its results to those of the manual method. Thus, the objective of the article was to obtain the degree of similarity between the results of the PVSYST simulation and the manual calculation of the same parameters, based on the study of the photovoltaic systems of the University Ibn Tofail. Those installations are installed in the Faculty of Letters, Science, the Presidency and CFC. The later used in our study, have different parameters. Hence, to collect these parameters and their distinct data we used multiple sources. The datasheets of each components of the PV system contains the parameters that distinguish the devices therefore it was mandatory to look for that information, since it will facilitate our study. The meteorological database PVGIS, was our reference for the temperature and irradiation data. What’s more is the PVSYST software that helps in the simulation of the PV system and thus having a detailed report with massive information. All this collection of data was aiming to help us comparing the results of yields and other parameters by manual calculation versus simulation in PVSYST. Morocco has demonstrated a strong commitment to combat climate change by embracing renewable energy, particularly photovoltaic systems. In this pursuit, universities like Ibn Tofail University (UIT) play a crucial role in addressing climate challenges and developing research solutions for mitigation. UIT actively participates in projects related to environmental protection and sustainable development, contributing to Morocco’s growth and higher education advancement. As part of its efforts, UIT has been involved in implementing sustainable green projects and promoting renewable energy technologies. A specific study at UIT aimed to compare PVSYST simulation results with manual calculations for four PV systems on campus, considering parameters such as orientation, electrical installation, and panel types. The International Energy Agency (IEA) Photovoltaic Systems Program has established standards and a key concept, the yield factor, measuring the net energy production over a facility’s lifetime compared to the energy used for construction, operation, and supply. By evaluating the accuracy and efficiency of PVSYST, researchers sought to advance the use of PV systems and contribute to Morocco’s renewable energy goals. Such research not only aids in the progression of renewable energy technology but also aligns with Morocco’s vision for sustainable development and environmental protection.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135304278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The energy management system is established in the microgrid system for optimally integrating the Distributed Energy Resources (DERs) and generating the power distribution grids. At last, diverse mechanisms have been highly concentrated on cost reduction and at the same time, both the technical indices and economic factors are considered. Thus, this research work suggests a new heuristic algorithm termed Modified Sandpiper optimization algorithm (M-SOA) for optimal integration of DER-like Photo Voltaic (PV), wind turbines, and Energy Storage Systems (ESS) into microgrids. Here, the techno-economical optimization with ISOA is designed for determining the optimal capacity of PV, Wind Turbine, and ESS via the multi-objective function concerning measures like network power losses, voltage fluctuations, Electricity Supply Costs, initial cost, operation cost, fuel cost, and demand side management. Finally, the optimal energy management is done on distributed energy resources, and this developed model experiments on the IEEE-33 bus network. Throughout the result analysis, the developed M-SOA obtains 3.84 %, 0.98 %, 5.72 %, and 4.63 % better performance with less latency than the AGTO, BOA, WOA, and SOA. Finally, the result evaluation is done for minimizing the Electricity Supply Costs, initial cost, operation cost, and fuel cost and maximize energy efficiency.
{"title":"Intelligent techno-economical optimization with demand side management in microgrid using improved sandpiper optimization algorithm","authors":"Mande Praveen, Venkata Siva Krishna Rao Gadi","doi":"10.1515/ehs-2023-0036","DOIUrl":"https://doi.org/10.1515/ehs-2023-0036","url":null,"abstract":"Abstract The energy management system is established in the microgrid system for optimally integrating the Distributed Energy Resources (DERs) and generating the power distribution grids. At last, diverse mechanisms have been highly concentrated on cost reduction and at the same time, both the technical indices and economic factors are considered. Thus, this research work suggests a new heuristic algorithm termed Modified Sandpiper optimization algorithm (M-SOA) for optimal integration of DER-like Photo Voltaic (PV), wind turbines, and Energy Storage Systems (ESS) into microgrids. Here, the techno-economical optimization with ISOA is designed for determining the optimal capacity of PV, Wind Turbine, and ESS via the multi-objective function concerning measures like network power losses, voltage fluctuations, Electricity Supply Costs, initial cost, operation cost, fuel cost, and demand side management. Finally, the optimal energy management is done on distributed energy resources, and this developed model experiments on the IEEE-33 bus network. Throughout the result analysis, the developed M-SOA obtains 3.84 %, 0.98 %, 5.72 %, and 4.63 % better performance with less latency than the AGTO, BOA, WOA, and SOA. Finally, the result evaluation is done for minimizing the Electricity Supply Costs, initial cost, operation cost, and fuel cost and maximize energy efficiency.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135343755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Asif, Faisal Iqbal, Hamas Esbhani, Mirza Taha Ahmed, Muhammad Uneeb Saqib
Abstract The current study aims to utilize population expansion by introducing a specially designed footsteps tiles mechanism capable of converting kinetic energy from footsteps into electricity. A rack and pinion mechanism was implemented due to its straightforward installation process and relatively high-power generation. However, addressing user comfort was crucial, as the mechanism caused significant deflections. As a result, a footstep tile mechanism was devised, manufactured, and thoroughly examined through both experimental and simulation methods. The CAD design of the mechanism was developed in SOLIDWORKS, dynamic models were created, and the system characteristics were analyzed using the simulation tool SIMULINK MATLAB ® . Based on the optimal design obtained through dynamic simulations, the mechanism was fabricated, tested, and analyzed. The testing phase demonstrated an average of 9 V generated per footstep, yielding an estimated mechanical output power of 8.5 W per footstep, with a mechanical-to-electrical conversion efficiency of 15.6 %. The proposed setup presents a promising roadmap for large-scale electricity generation in densely populated areas such as institutes, hospitals, railway stations, and similar locations.
{"title":"Theoretical and experimental investigation of electricity generation through footstep tiles","authors":"Muhammad Asif, Faisal Iqbal, Hamas Esbhani, Mirza Taha Ahmed, Muhammad Uneeb Saqib","doi":"10.1515/ehs-2023-0069","DOIUrl":"https://doi.org/10.1515/ehs-2023-0069","url":null,"abstract":"Abstract The current study aims to utilize population expansion by introducing a specially designed footsteps tiles mechanism capable of converting kinetic energy from footsteps into electricity. A rack and pinion mechanism was implemented due to its straightforward installation process and relatively high-power generation. However, addressing user comfort was crucial, as the mechanism caused significant deflections. As a result, a footstep tile mechanism was devised, manufactured, and thoroughly examined through both experimental and simulation methods. The CAD design of the mechanism was developed in SOLIDWORKS, dynamic models were created, and the system characteristics were analyzed using the simulation tool SIMULINK MATLAB ® . Based on the optimal design obtained through dynamic simulations, the mechanism was fabricated, tested, and analyzed. The testing phase demonstrated an average of 9 V generated per footstep, yielding an estimated mechanical output power of 8.5 W per footstep, with a mechanical-to-electrical conversion efficiency of 15.6 %. The proposed setup presents a promising roadmap for large-scale electricity generation in densely populated areas such as institutes, hospitals, railway stations, and similar locations.","PeriodicalId":36885,"journal":{"name":"Energy Harvesting and Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134886064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}