{"title":"Temporarily enhanced superconductivity from magnetic fields","authors":"Eirik Holm Fyhn, J. Linder","doi":"10.1103/PHYSREVB.103.L100502","DOIUrl":null,"url":null,"abstract":"Contrary to the expected detrimental influence on superconductivity when applying a magnetic field, we predict that the abrupt onset of such a field can temporarily strongly enhance the superconducting order parameter. Specifically, we find that the supercurrent in a Josephson junction with a normal metal weak link can increase more than twentyfold in this way. The effect can be understood from the interplay between the energy-dependenceof Andreev reflection and the abrupt spin-dependent shift in the distribution functions for excitations in the system. The duration of the increase depends on the inelastic scattering rate in the system and is estimated to be in the range of nanoseconds. We demonstrate this by developing a method which solves the Usadel equation for an arbitrary time-dependence. This enables the study of ultrafast time-dependent physics in heterostructures combining superconductors with different types of materials.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.L100502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Contrary to the expected detrimental influence on superconductivity when applying a magnetic field, we predict that the abrupt onset of such a field can temporarily strongly enhance the superconducting order parameter. Specifically, we find that the supercurrent in a Josephson junction with a normal metal weak link can increase more than twentyfold in this way. The effect can be understood from the interplay between the energy-dependenceof Andreev reflection and the abrupt spin-dependent shift in the distribution functions for excitations in the system. The duration of the increase depends on the inelastic scattering rate in the system and is estimated to be in the range of nanoseconds. We demonstrate this by developing a method which solves the Usadel equation for an arbitrary time-dependence. This enables the study of ultrafast time-dependent physics in heterostructures combining superconductors with different types of materials.