Sliding Mode Controller Applied to Autonomous UAV Operation in Marine Small Cargo Transport

Guilherme F. Carvalho;Fabio A. A. Andrade;Gabryel S. Ramos;Alessandro R. L. Zachi;Ana L. F. de Barros;Milena F. Pinto
{"title":"Sliding Mode Controller Applied to Autonomous UAV Operation in Marine Small Cargo Transport","authors":"Guilherme F. Carvalho;Fabio A. A. Andrade;Gabryel S. Ramos;Alessandro R. L. Zachi;Ana L. F. de Barros;Milena F. Pinto","doi":"10.1109/JMASS.2023.3296433","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been used in different applications due to their flexibility in maneuvering and performing missions. However, they can face external disturbances, such as wind, which can cause physical instability of the platform. Usually, UAVs commonly use a classical PID controller due to their simple structure and less dependence on the model. However, this classical controller requires expertise from the operator to adjust the parameters when dealing with nonlinearities. Therefore, this work proposes the integration of a slide mode control (SMC) controller into a PX4 flight control unit (FCU) and combining it with computer vision techniques and sensor data fusion to enable autonomous UAV offshore cargo tasks for the Oil & Gas sector. The controller was evaluated in a software in the loop (SITL) simulation performed in the robot operating system (ROS), demonstrating its robustness and potential for small marine cargo transportation using UAVs.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 4","pages":"345-357"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10185965","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10185965/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) have been used in different applications due to their flexibility in maneuvering and performing missions. However, they can face external disturbances, such as wind, which can cause physical instability of the platform. Usually, UAVs commonly use a classical PID controller due to their simple structure and less dependence on the model. However, this classical controller requires expertise from the operator to adjust the parameters when dealing with nonlinearities. Therefore, this work proposes the integration of a slide mode control (SMC) controller into a PX4 flight control unit (FCU) and combining it with computer vision techniques and sensor data fusion to enable autonomous UAV offshore cargo tasks for the Oil & Gas sector. The controller was evaluated in a software in the loop (SITL) simulation performed in the robot operating system (ROS), demonstrating its robustness and potential for small marine cargo transportation using UAVs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑模控制器在自主无人机海上小货运输中的应用
无人驾驶飞行器(uav)由于其机动和执行任务的灵活性而被用于不同的应用领域。然而,它们可能面临外部干扰,如风,这可能导致平台的物理不稳定。由于传统的PID控制器结构简单,对模型的依赖性较小,因此无人机通常采用经典的PID控制器。然而,这种经典控制器在处理非线性时需要操作员的专业知识来调整参数。因此,这项工作提出将滑模控制(SMC)控制器集成到PX4飞行控制单元(FCU)中,并将其与计算机视觉技术和传感器数据融合相结合,以实现石油和天然气部门的自主无人机海上货物任务。在机器人操作系统(ROS)中进行的软件在环(SITL)仿真中对该控制器进行了评估,证明了其鲁棒性和使用无人机进行小型海上货物运输的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1