A look back at the quality of Protein Function Prediction tools in CAFA

Morteza Pourreza Shahri, Madhusudan Srinivasan, D. Bimczok, Upulee Kanewala, Indika Kahanda
{"title":"A look back at the quality of Protein Function Prediction tools in CAFA","authors":"Morteza Pourreza Shahri, Madhusudan Srinivasan, D. Bimczok, Upulee Kanewala, Indika Kahanda","doi":"10.7287/peerj.preprints.27161v1","DOIUrl":null,"url":null,"abstract":"The Critical Assessment of protein Function Annotation algorithms (CAFA) is a large-scale experiment for assessing the computational models for automated function prediction (AFP). The models presented in CAFA have shown excellent promise in terms of prediction accuracy, but quality assurance has been paid relatively less attention. The main challenge associated with conducting systematic testing on AFP software is the lack of a test oracle, which determines passing or failing of a test case; unfortunately, the exact expected outcomes are not well defined for the AFP task. Thus, AFP tools face the oracle problem. Metamorphic testing (MT) is a technique used to test programs that face the oracle problem using metamorphic relations (MRs). A MR determines whether a test has passed or failed by specifying how the output should change according to a specific change made to the input. In this work, we use MT to test nine CAFA2 AFP tools by defining a set of MRs that apply input transformations at the protein-level. According to our initial testing, we observe that several tools fail all the test cases and two tools pass all the test cases on different GO ontologies.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"36 1","pages":"e27161"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27161v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Critical Assessment of protein Function Annotation algorithms (CAFA) is a large-scale experiment for assessing the computational models for automated function prediction (AFP). The models presented in CAFA have shown excellent promise in terms of prediction accuracy, but quality assurance has been paid relatively less attention. The main challenge associated with conducting systematic testing on AFP software is the lack of a test oracle, which determines passing or failing of a test case; unfortunately, the exact expected outcomes are not well defined for the AFP task. Thus, AFP tools face the oracle problem. Metamorphic testing (MT) is a technique used to test programs that face the oracle problem using metamorphic relations (MRs). A MR determines whether a test has passed or failed by specifying how the output should change according to a specific change made to the input. In this work, we use MT to test nine CAFA2 AFP tools by defining a set of MRs that apply input transformations at the protein-level. According to our initial testing, we observe that several tools fail all the test cases and two tools pass all the test cases on different GO ontologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAFA蛋白功能预测工具的质量回顾
蛋白质功能注释算法的关键评估(CAFA)是一项大规模的实验,用于评估自动功能预测(AFP)的计算模型。CAFA中提出的模型在预测精度方面显示出良好的前景,但质量保证相对较少受到重视。在AFP软件上进行系统测试的主要挑战是缺乏测试oracle,它决定测试用例的通过或失败;不幸的是,AFP任务的确切预期结果并没有很好地定义。因此,AFP工具面临着oracle问题。变形测试(MT)是一种使用变形关系(MRs)测试面临oracle问题的程序的技术。MR通过指定输出应该如何根据对输入所做的特定更改来更改来确定测试是否通过或失败。在这项工作中,我们使用MT通过定义一组在蛋白质水平上应用输入转换的MRs来测试9个CAFA2 AFP工具。根据我们最初的测试,我们观察到有几个工具没有通过所有的测试用例,有两个工具通过了不同GO本体上的所有测试用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1