12 Grand Challenges in Single-Cell Data Science

David Lähnemann, Johannes Köster, E. Szczurek, Davis J. McCarthy, S. Hicks, M. Robinson, C. Vallejos, N. Beerenwinkel, Kieran R. Campbell, A. Mahfouz, Luca Pinello, P. Skums, A. Stamatakis, Camille Stephan-Otto Attolini, Samuel Aparicio, J. Baaijens, M. Balvert, B. D. Barbanson, A. Cappuccio, G. Corleone, B. Dutilh, M. Florescu, V. Guryev, Rens Holmer, Katharina Jahn, Thamar Jessurun Lobo, Emma M. Keizer, Indu Khatri, S. Kiełbasa, J. Korbel, Alexey M. Kozlov, Tzu-Hao Kuo, B. Lelieveldt, I. Măndoiu, J. Marioni, T. Marschall, Felix Mölder, A. Niknejad, Lukasz Raczkowski, M. Reinders, J. Ridder, A. Saliba, A. Somarakis, O. Stegle, Fabian J Theis, Huan Yang, A. Zelikovsky, A. Mchardy, Benjamin J. Raphael, Sohrab P. Shah, A. Schönhuth
{"title":"12 Grand Challenges in Single-Cell Data Science","authors":"David Lähnemann, Johannes Köster, E. Szczurek, Davis J. McCarthy, S. Hicks, M. Robinson, C. Vallejos, N. Beerenwinkel, Kieran R. Campbell, A. Mahfouz, Luca Pinello, P. Skums, A. Stamatakis, Camille Stephan-Otto Attolini, Samuel Aparicio, J. Baaijens, M. Balvert, B. D. Barbanson, A. Cappuccio, G. Corleone, B. Dutilh, M. Florescu, V. Guryev, Rens Holmer, Katharina Jahn, Thamar Jessurun Lobo, Emma M. Keizer, Indu Khatri, S. Kiełbasa, J. Korbel, Alexey M. Kozlov, Tzu-Hao Kuo, B. Lelieveldt, I. Măndoiu, J. Marioni, T. Marschall, Felix Mölder, A. Niknejad, Lukasz Raczkowski, M. Reinders, J. Ridder, A. Saliba, A. Somarakis, O. Stegle, Fabian J Theis, Huan Yang, A. Zelikovsky, A. Mchardy, Benjamin J. Raphael, Sohrab P. Shah, A. Schönhuth","doi":"10.7287/PEERJ.PREPRINTS.27885V1","DOIUrl":null,"url":null,"abstract":"The recent upswing of microfluidics and combinatorial indexing strategies, further enhanced by very low sequencing costs, have turned single cell sequencing into an empowering technology; analyzing thousands—or even millions—of cells per experimental run is becoming a routine assignment in laboratories worldwide. As a consequence, we are witnessing a data revolution in single cell biology. Although some issues are similar in spirit to those experienced in bulk sequencing, many of the emerging data science problems are unique to single cell analysis; together, they give rise to the new realm of 'Single-Cell Data Science'.\n Here, we outline twelve challenges that will be central in bringing this new field forward. For each challenge, the current state of the art in terms of prior work is reviewed, and open problems are formulated, with an emphasis on the research goals that motivate them.\n This compendium is meant to serve as a guideline for established researchers, newcomers and students alike, highlighting interesting and rewarding problems in 'Single-Cell Data Science' for the coming years.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"30 1","pages":"e27885"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/PEERJ.PREPRINTS.27885V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The recent upswing of microfluidics and combinatorial indexing strategies, further enhanced by very low sequencing costs, have turned single cell sequencing into an empowering technology; analyzing thousands—or even millions—of cells per experimental run is becoming a routine assignment in laboratories worldwide. As a consequence, we are witnessing a data revolution in single cell biology. Although some issues are similar in spirit to those experienced in bulk sequencing, many of the emerging data science problems are unique to single cell analysis; together, they give rise to the new realm of 'Single-Cell Data Science'. Here, we outline twelve challenges that will be central in bringing this new field forward. For each challenge, the current state of the art in terms of prior work is reviewed, and open problems are formulated, with an emphasis on the research goals that motivate them. This compendium is meant to serve as a guideline for established researchers, newcomers and students alike, highlighting interesting and rewarding problems in 'Single-Cell Data Science' for the coming years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞数据科学的12大挑战
最近微流体和组合索引策略的兴起,加上极低的测序成本,使单细胞测序成为一项赋权技术;每次实验分析数千甚至数百万个细胞,正成为世界各地实验室的常规任务。因此,我们正在见证单细胞生物学的数据革命。虽然有些问题在精神上与批量测序中遇到的问题相似,但许多新出现的数据科学问题是单细胞分析所独有的;它们共同产生了“单细胞数据科学”的新领域。在这里,我们概述了推动这一新领域向前发展的12个核心挑战。对于每个挑战,就先前的工作而言,当前的艺术状态进行了回顾,并制定了开放的问题,重点是激励他们的研究目标。本纲要旨在为成熟的研究人员、新手和学生提供指导,突出未来几年“单细胞数据科学”中有趣和有益的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1