Performance comparison of two non-parametric classifiers for classification using geometric features

S. Moldovanu, Iulia-Nela Anghelache Nastase, M. Miron, L. Moraru
{"title":"Performance comparison of two non-parametric classifiers for classification using geometric features","authors":"S. Moldovanu, Iulia-Nela Anghelache Nastase, M. Miron, L. Moraru","doi":"10.35219/ann-ugal-math-phys-mec.2022.2.04","DOIUrl":null,"url":null,"abstract":"This study aims to examine and compare the performances of Random Forest (RF) and k-Nearest Neighbor (k-NN) algorithms used for classification based on certain geometric features. For the purpose of the analysis, the Breast Cancer Wisconsin (BCW) public dataset is used. BCW dataset contains features like area, perimeter, radius, compactness, and symmetry computed from 357 benign, and 212 malignant breast images, respectively. Three different experiments related to the size of training and testing datasets for classification are conducted and different accuracy values are obtained. The best accuracy of 91.9% for RF and 91.3% for kNN, respectively, are reached when 30% of the entire dataset is used as testing dataset. For all experiments, the RF classifier outperformed the kNN.","PeriodicalId":43589,"journal":{"name":"Annals of the University Dunarea de Jos of Galati, Fascicle VI-Food Technology","volume":"92 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University Dunarea de Jos of Galati, Fascicle VI-Food Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35219/ann-ugal-math-phys-mec.2022.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to examine and compare the performances of Random Forest (RF) and k-Nearest Neighbor (k-NN) algorithms used for classification based on certain geometric features. For the purpose of the analysis, the Breast Cancer Wisconsin (BCW) public dataset is used. BCW dataset contains features like area, perimeter, radius, compactness, and symmetry computed from 357 benign, and 212 malignant breast images, respectively. Three different experiments related to the size of training and testing datasets for classification are conducted and different accuracy values are obtained. The best accuracy of 91.9% for RF and 91.3% for kNN, respectively, are reached when 30% of the entire dataset is used as testing dataset. For all experiments, the RF classifier outperformed the kNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两种非参数分类器在几何特征分类中的性能比较
本研究旨在检验和比较随机森林(RF)和k-最近邻(k-NN)算法的性能,用于基于某些几何特征的分类。为了分析的目的,使用了威斯康星州乳腺癌(BCW)公共数据集。BCW数据集包含分别从357张良性乳房图像和212张恶性乳房图像计算得出的面积、周长、半径、紧凑度和对称性等特征。针对分类的训练和测试数据集的大小进行了三个不同的实验,得到了不同的准确率值。当使用整个数据集的30%作为测试数据集时,RF和kNN的最佳准确率分别达到91.9%和91.3%。在所有实验中,RF分类器的性能都优于kNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
13
审稿时长
6 weeks
期刊最新文献
CHALLENGES DETERMINED BY THE NEW TRENDS IN HANDBALL COMMUNICATION HIGHLIGHTING THE ASPECTS OF DIFFERENTIATION BETWEEN THE TACTICS AND THE SPECIFIC TECHNIQUE OF THE FOOTBALL GAME EXPERT OPINION STUDY REGARDING THE EFFICIENCY OF THE RUGBY METHODS IMPLEMENTATION DURING THE PHYSICAL EDUCATION CLASSES FOR THE HIGH SCHOOL STUDENTS THE USE OF VIRTUAL REALITY IN FROZEN SHOULDER MOBILIZATION PRACTICAL ASPECTS OF ATTACK PREPARATION IN THE GAME OF TENNIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1