Improving the resolution of microscope by deconvolution after dense scan

Yaohua Xie
{"title":"Improving the resolution of microscope by deconvolution after dense scan","authors":"Yaohua Xie","doi":"10.7287/peerj.preprints.27849/supp-1","DOIUrl":null,"url":null,"abstract":"Super-resolution microscopes (such as STED) illuminate samples with a tiny spot, and achieve very high resolution. But structures smaller than the spot cannot be resolved in this way. Therefore, we propose a technique to solve this problem. It is termed “Deconvolution after Dense Scan (DDS)”. First, a preprocessing stage is introduced to eliminate the optical uncertainty of the peripheral areas around the sample’s ROI (Region of Interest). Then, the ROI is scanned densely together with its peripheral areas. Finally, the high resolution image is recovered by deconvolution. The proposed technique does not need to modify the apparatus much, and is mainly performed by algorithm. Simulation experiments show that the technique can further improve the resolution of super-resolution microscopes.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"54 1 1","pages":"e27849"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27849/supp-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Super-resolution microscopes (such as STED) illuminate samples with a tiny spot, and achieve very high resolution. But structures smaller than the spot cannot be resolved in this way. Therefore, we propose a technique to solve this problem. It is termed “Deconvolution after Dense Scan (DDS)”. First, a preprocessing stage is introduced to eliminate the optical uncertainty of the peripheral areas around the sample’s ROI (Region of Interest). Then, the ROI is scanned densely together with its peripheral areas. Finally, the high resolution image is recovered by deconvolution. The proposed technique does not need to modify the apparatus much, and is mainly performed by algorithm. Simulation experiments show that the technique can further improve the resolution of super-resolution microscopes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
密扫后反褶积提高显微镜分辨率
超分辨率显微镜(如STED)用一个微小的斑点照亮样品,并获得非常高的分辨率。但是小于点的结构不能用这种方法解决。因此,我们提出一种技术来解决这个问题。它被称为“密集扫描后的反卷积(DDS)”。首先,引入预处理阶段以消除样品感兴趣区域周围周边区域的光学不确定性。然后,对感兴趣区域及其周边区域进行密集扫描。最后,通过反卷积恢复高分辨率图像。该方法不需要对仪器进行很大的修改,主要通过算法实现。仿真实验表明,该技术可以进一步提高超分辨显微镜的分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A framework for designing compassionate and ethical artificial intelligence and artificial consciousness Time series event correlation with DTW and Hierarchical Clustering methods Securing ad hoc on-demand distance vector routing protocol against the black hole DoS attack in MANETs 12 Grand Challenges in Single-Cell Data Science Mice tracking using the YOLO algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1