Tree ring-reconstructed late summer moisture conditions, 1546 to present, northern Lake Michigan, USA

IF 1.2 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Climate Research Pub Date : 2021-03-11 DOI:10.3354/CR01637
Scott M. Warner, Samantha J. Jeffries, W. Lovis, A. Arbogast, F. Telewski
{"title":"Tree ring-reconstructed late summer moisture conditions, 1546 to present, northern Lake Michigan, USA","authors":"Scott M. Warner, Samantha J. Jeffries, W. Lovis, A. Arbogast, F. Telewski","doi":"10.3354/CR01637","DOIUrl":null,"url":null,"abstract":"Drought can affect even humid regions like northeastern North America, which experienced significant, well-documented dry spells in the 1930s, 50s, 60s, and 80s, and proxies tell us that in the years before instrumentally recorded climate, droughts could be even more severe. To get a more complete picture of pre-recorded climate, the spatial coverage of proxy-based climate reconstructions must be extended. This can better put in context past, current, and future climate, and it can lend anthropological and historical insights. With regard to tree rings as climate proxies, however, there is increasing evidence that relationships between tree growth and climate can be inconsistent over time, in some cases decreasing the utility of tree rings in the representation of climate. We developed a chronology from white cedar Thuja occidentalis tree ring widths for the period 1469-2015 C.E. with which we modeled the relationship between growth and July-September moisture conditions (Palmer Z index). The relationship was consistent across the period of instrumentally recorded climate, 1895-present, and the model explained 27% of variability. Therefore, we used the model to reconstruct July-September moisture conditions from 1546-2014. We found the most variable century to be the 20th, the least the 18th. The severest decade-scale droughts (≤0.75 SD from mean) occurred in the 1560s, 1600s/10s, 1630s, 1770s/80s, 1840s, and 1910s/20s, the severest pluvials (≥0.75 SD) in the 1610s/20s, 1660s/70s, and the 1970s/80s. The occasional occurrence of severe droughts throughout the reconstruction, increasing variability in the 20th century, and expected climate change-enhanced late summer drought, portend a future punctuated with severe droughts.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"21 1","pages":"43-56"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/CR01637","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Drought can affect even humid regions like northeastern North America, which experienced significant, well-documented dry spells in the 1930s, 50s, 60s, and 80s, and proxies tell us that in the years before instrumentally recorded climate, droughts could be even more severe. To get a more complete picture of pre-recorded climate, the spatial coverage of proxy-based climate reconstructions must be extended. This can better put in context past, current, and future climate, and it can lend anthropological and historical insights. With regard to tree rings as climate proxies, however, there is increasing evidence that relationships between tree growth and climate can be inconsistent over time, in some cases decreasing the utility of tree rings in the representation of climate. We developed a chronology from white cedar Thuja occidentalis tree ring widths for the period 1469-2015 C.E. with which we modeled the relationship between growth and July-September moisture conditions (Palmer Z index). The relationship was consistent across the period of instrumentally recorded climate, 1895-present, and the model explained 27% of variability. Therefore, we used the model to reconstruct July-September moisture conditions from 1546-2014. We found the most variable century to be the 20th, the least the 18th. The severest decade-scale droughts (≤0.75 SD from mean) occurred in the 1560s, 1600s/10s, 1630s, 1770s/80s, 1840s, and 1910s/20s, the severest pluvials (≥0.75 SD) in the 1610s/20s, 1660s/70s, and the 1970s/80s. The occasional occurrence of severe droughts throughout the reconstruction, increasing variability in the 20th century, and expected climate change-enhanced late summer drought, portend a future punctuated with severe droughts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1546年至今,美国密西根湖北部树木年轮重建的夏末湿度状况
干旱甚至会影响到湿润的地区,比如北美东北部,那里在20世纪30年代、50年代、60年代和80年代经历了严重的、有充分记录的干旱期,代用物告诉我们,在仪器记录气候之前的几年里,干旱可能会更加严重。为了更全面地了解预记录的气候,基于代理的气候重建的空间覆盖范围必须扩大。这可以更好地把过去、现在和未来的气候放在背景下,它可以提供人类学和历史学的见解。然而,关于树木年轮作为气候代用物,越来越多的证据表明,树木生长与气候之间的关系可能随着时间的推移而不一致,在某些情况下,树木年轮在表征气候方面的效用会降低。我们从1469年至2015年的白雪松树年轮宽度中开发了一个年表,我们用它来模拟生长与7月至9月湿度条件(Palmer Z指数)之间的关系。这种关系在仪器记录的气候期间(1895年至今)是一致的,该模式解释了27%的变率。因此,我们使用该模型重建了1546-2014年7 - 9月的湿度条件。我们发现变化最大的世纪是20世纪,变化最小的世纪是18世纪。最严重的十年尺度干旱发生在1560年代、1600年代/10年代、1630年代、1770年代/80年代、1840年代和1910年代/20年代,降水最严重(≥0.75 SD)发生在1610年代/20年代、1660年代/70年代和70年代/80年代。在整个重建过程中偶尔发生的严重干旱,20世纪的变异性增加,以及预期的气候变化增强的夏末干旱,预示着未来将不时出现严重干旱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Climate Research
Climate Research 地学-环境科学
CiteScore
2.90
自引率
9.10%
发文量
25
审稿时长
3 months
期刊介绍: Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with: -Interactions of climate with organisms, populations, ecosystems, and human societies -Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation -Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management -Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels -Historical case studies, including paleoecology and paleoclimatology -Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards -Land-surface climatology. Soil degradation, deforestation, desertification -Assessment and implementation of adaptations and response options -Applications of climate models and modelled future climate scenarios. Methodology in model development and application
期刊最新文献
Spatio-temporal changes of heat and cold wave patterns in western Iran Adoption of adaptive behavior and its peer effects on grain growers in Jiangxi Province, China Improving factor efficiency under climate change through adaptive behavior: analysis of genetically modified insect-resistant cotton Farmers’ adaptation to climate change and water consumption in southwest Iran: application of switching regression Adaptation to climate impacts on rice production: an analysis of dry zone farmers in central Myanmar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1