Cross-layer optimization for multi-class VSG CDMA in Rayleigh fading

P. Sedtheetorn
{"title":"Cross-layer optimization for multi-class VSG CDMA in Rayleigh fading","authors":"P. Sedtheetorn","doi":"10.1109/ISIEA.2009.5356490","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a joint throughput maximisation design across Physical (PHY) and Call admission control (CAC) layer for multi-class VSG CDMA systems in a Rayleigh fading environment. The system model is accurately analysed and a new exact closed form of the PHY-layer constraint is derived. We show that it is possible to transform the set of the non-linear PHY-layer constraints into linear expressions of the admission region of CAC layer. This facilitates formulating a linear cost function, which is modeled by semi-Markov decision processes (SMDPs), and results in an accurate cross-layer optimisation design. With the proposed design, the maximum throughput is achieved by linear-programming approach as well as the QoS requirements of both layers are guaranteed. Based on the numerical results, the system performance are improved up to 50% in terms of throughput and blocking probability.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"10 1","pages":"165-169"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a joint throughput maximisation design across Physical (PHY) and Call admission control (CAC) layer for multi-class VSG CDMA systems in a Rayleigh fading environment. The system model is accurately analysed and a new exact closed form of the PHY-layer constraint is derived. We show that it is possible to transform the set of the non-linear PHY-layer constraints into linear expressions of the admission region of CAC layer. This facilitates formulating a linear cost function, which is modeled by semi-Markov decision processes (SMDPs), and results in an accurate cross-layer optimisation design. With the proposed design, the maximum throughput is achieved by linear-programming approach as well as the QoS requirements of both layers are guaranteed. Based on the numerical results, the system performance are improved up to 50% in terms of throughput and blocking probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瑞利衰落下多类VSG CDMA的跨层优化
在本文中,我们提出了一种在瑞利衰落环境下,跨物理层(PHY)和呼叫接纳控制层(CAC)的多类VSG CDMA系统的联合吞吐量最大化设计。对系统模型进行了精确分析,导出了物理层约束的新的精确封闭形式。我们证明了将物理层的非线性约束集合转化为CAC层接纳区的线性表达式是可能的。这有助于制定线性成本函数,该函数由半马尔可夫决策过程(smdp)建模,并导致准确的跨层优化设计。该设计通过线性规划实现了最大的吞吐量,同时保证了两层的QoS要求。数值结果表明,在吞吐量和阻塞概率方面,系统性能提高了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control Application and evaluation of high power Zigbee based wireless sensor network in water irrigation control monitoring system Efficiency performance analysis of Series Loaded Resonant converter Parallel distributed compensation based robust fuzzy control A new Shifted Scaled LS channel estimator for Rician flat fading MIMO channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1