D. McAdams, Erik B. Johnson, M. Squillante, Andrew Harrington, R. Blakeley, E. Weststrate, Jane He, S. Bader, J. Christian
{"title":"Wireless Sensor Platform for Dry Spent Fuel Cask Monitoring","authors":"D. McAdams, Erik B. Johnson, M. Squillante, Andrew Harrington, R. Blakeley, E. Weststrate, Jane He, S. Bader, J. Christian","doi":"10.1109/NSS/MIC42677.2020.9508083","DOIUrl":null,"url":null,"abstract":"Nuclear power plants regularly generate spent fuel that must be stored on the decade timescale. Often this is done in dry nuclear waste storage casks. Long-term monitoring would provide data that improves the safe maintenance of stored spent fuel. This requires measuring the conditions within waste casks using a self-contained sensor system. Radiation Monitoring Devices, Inc. is developing a system that detects damaged fuel rod cladding by sensing and quantifying the amount of 85Kr present using a diamond sensor. A potential means for power and data transfer through the cask wall uses an ultrasonic transmission method. The work described here advances the prototype toward inclusion in a specific model fuel cask, the NUHOMS® 32 PTH1 manufactured by Orano (formally, Areva Transnuclear, Inc.). The results include extensive radiological modeling studies, an estimation of the leaked activity due to 85Kr after a cladding breach (~ 1013Bq) derived from a literature review, a design for a prototype, and the characterization of a diamond detector at room temperature and in the presence of 85Kr.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear power plants regularly generate spent fuel that must be stored on the decade timescale. Often this is done in dry nuclear waste storage casks. Long-term monitoring would provide data that improves the safe maintenance of stored spent fuel. This requires measuring the conditions within waste casks using a self-contained sensor system. Radiation Monitoring Devices, Inc. is developing a system that detects damaged fuel rod cladding by sensing and quantifying the amount of 85Kr present using a diamond sensor. A potential means for power and data transfer through the cask wall uses an ultrasonic transmission method. The work described here advances the prototype toward inclusion in a specific model fuel cask, the NUHOMS® 32 PTH1 manufactured by Orano (formally, Areva Transnuclear, Inc.). The results include extensive radiological modeling studies, an estimation of the leaked activity due to 85Kr after a cladding breach (~ 1013Bq) derived from a literature review, a design for a prototype, and the characterization of a diamond detector at room temperature and in the presence of 85Kr.