{"title":"A real-time ship encounter collision risk detection approach in close-quarters situation","authors":"B. Sui, Jianqiang Zhang, Zhong Liu","doi":"10.1177/00202940231175086","DOIUrl":null,"url":null,"abstract":"In order to identify ship collision risk for the security of maritime transportation in a close-quarters situation, a novel real-time ship collision risk awareness approach is proposed by developing a novel non-linear velocity obstacle set, QSD-NLVO. More specifically, the Quaternion Ship Domain model was introduced into the non-linear velocity obstacle algorithm, and the conflict position was reasonably defined. By replacing the conflict position with ship domain, the proposed method can more reasonably assess the safety radius of the conflict in different ship encounter scenarios. The presented model enhanced the accuracy of collision risk identification by replacing the collision position in non-linear velocity obstacle algorithm with quaternion ship domain. Finally, case studies were implemented to illustrate the effectiveness of the QSD-NLVO approach. The developed model may be utilized as a guide for investigating port traffic safety as well as a tool for maritime surveillance operators to monitor port traffic collision risks and increase traffic safety.","PeriodicalId":18375,"journal":{"name":"Measurement and Control","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231175086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to identify ship collision risk for the security of maritime transportation in a close-quarters situation, a novel real-time ship collision risk awareness approach is proposed by developing a novel non-linear velocity obstacle set, QSD-NLVO. More specifically, the Quaternion Ship Domain model was introduced into the non-linear velocity obstacle algorithm, and the conflict position was reasonably defined. By replacing the conflict position with ship domain, the proposed method can more reasonably assess the safety radius of the conflict in different ship encounter scenarios. The presented model enhanced the accuracy of collision risk identification by replacing the collision position in non-linear velocity obstacle algorithm with quaternion ship domain. Finally, case studies were implemented to illustrate the effectiveness of the QSD-NLVO approach. The developed model may be utilized as a guide for investigating port traffic safety as well as a tool for maritime surveillance operators to monitor port traffic collision risks and increase traffic safety.