Test Cost Reduction for X-Value Elimination By Scan Slice Correlation Analysis

Hyunsu Chae, Joon-Sung Yang
{"title":"Test Cost Reduction for X-Value Elimination By Scan Slice Correlation Analysis","authors":"Hyunsu Chae, Joon-Sung Yang","doi":"10.1145/3195970.3196127","DOIUrl":null,"url":null,"abstract":"X-values in test output responses corrupt an output response compaction and can cause a fault coverage loss. X-Masking and X-Canceling MISR methods have been suggested to eliminate X-values, however, there are control data volume and test time overhead issues. These issues become significant as the complexity and the density of the circuits increase. This paper proposes a method to eliminate X's by applying a scan slice granularity X-value correlation analysis. The proposed method exploits scan slice correlation analysis, determines unique control data for the scan slice groups sharing the same control data, and applies them for each scan slice. Hence, the volume of control data can be significantly reduced. The simulation results demonstrate that the proposed method achieves greater control data and test time reduction compared to the conventional methods, without loss of fault coverage.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"2 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-values in test output responses corrupt an output response compaction and can cause a fault coverage loss. X-Masking and X-Canceling MISR methods have been suggested to eliminate X-values, however, there are control data volume and test time overhead issues. These issues become significant as the complexity and the density of the circuits increase. This paper proposes a method to eliminate X's by applying a scan slice granularity X-value correlation analysis. The proposed method exploits scan slice correlation analysis, determines unique control data for the scan slice groups sharing the same control data, and applies them for each scan slice. Hence, the volume of control data can be significantly reduced. The simulation results demonstrate that the proposed method achieves greater control data and test time reduction compared to the conventional methods, without loss of fault coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用扫描片相关分析降低x值消除的测试成本
测试输出响应中的x值破坏了输出响应压缩,并可能导致故障覆盖损失。已经建议使用X-Masking和x - cancellation MISR方法来消除x值,但是存在控制数据量和测试时间开销问题。随着电路的复杂性和密度的增加,这些问题变得越来越重要。本文提出了一种利用扫描片粒度X值相关分析来消除X的方法。该方法利用扫描切片相关性分析,为共享相同控制数据的扫描切片组确定唯一的控制数据,并将其应用于每个扫描切片。因此,控制数据的数量可以显著减少。仿真结果表明,与传统方法相比,该方法在不损失故障覆盖率的情况下,获得了更多的控制数据和测试时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1