Learning Meshes for Dense Visual SLAM

Michael Bloesch, Tristan Laidlow, R. Clark, Stefan Leutenegger, A. Davison
{"title":"Learning Meshes for Dense Visual SLAM","authors":"Michael Bloesch, Tristan Laidlow, R. Clark, Stefan Leutenegger, A. Davison","doi":"10.1109/ICCV.2019.00595","DOIUrl":null,"url":null,"abstract":"Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"43 1","pages":"5854-5863"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Estimating motion and surrounding geometry of a moving camera remains a challenging inference problem. From an information theoretic point of view, estimates should get better as more information is included, such as is done in dense SLAM, but this is strongly dependent on the validity of the underlying models. In the present paper, we use triangular meshes as both compact and dense geometry representation. To allow for simple and fast usage, we propose a view-based formulation for which we predict the in-plane vertex coordinates directly from images and then employ the remaining vertex depth components as free variables. Flexible and continuous integration of information is achieved through the use of a residual based inference technique. This so-called factor graph encodes all information as mapping from free variables to residuals, the squared sum of which is minimised during inference. We propose the use of different types of learnable residuals, which are trained end-to-end to increase their suitability as information bearing models and to enable accurate and reliable estimation. Detailed evaluation of all components is provided on both synthetic and real data which confirms the practicability of the presented approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习密集视觉SLAM的网格
估计运动摄像机的运动和周围几何形状仍然是一个具有挑战性的推理问题。从信息理论的角度来看,随着包含更多的信息,估计应该变得更好,例如在密集SLAM中完成的,但是这强烈依赖于底层模型的有效性。在本文中,我们使用三角形网格作为紧凑和密集的几何表示。为了允许简单和快速的使用,我们提出了一个基于视图的公式,我们直接从图像中预测平面内顶点坐标,然后使用剩余的顶点深度分量作为自由变量。利用残差推理技术实现了信息的灵活持续集成。这个所谓的因子图将所有信息编码为从自由变量到残差的映射,其平方和在推理过程中最小化。我们建议使用不同类型的可学习残差,对其进行端到端训练,以提高其作为信息承载模型的适用性,并实现准确可靠的估计。在综合数据和实际数据上对各组成部分进行了详细的评价,证实了所提出方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1